
EWCG 2005, Eindhoven, March 9–11, 2005

Finding the Best Shortcut in a Geometric Network ∗

Mohammad Farshi† Panos Giannopoulos‡ Joachim Gudmundsson§

Abstract

Given a Euclidean graph G in Rd with n vertices
and m edges we consider the problem of adding a
shortcut such that the stretch factor of the resulting
graph is minimized. Currently, the fastest algorithm
for computing the stretch factor of a Euclidean graph
runs in O(mn + n2 log n) time, resulting in a trivial
O(mn3 + n4 log n) time algorithm for computing the
optimal shortcut. First, we show that a simple modifi-
cation yields the optimal solution in O(n4) time using
O(n2) space. To reduce the running times we consider
several approximation algorithms. Our main result is
a (2 + ε)-approximation algorithm with running time
O(nm+ n2(log n+ 1/ε3d)) using O(n2) space.

1 Introduction

Consider a set V of n points in Rd. A network on V
can be modeled as an undirected graph G with vertex
set V and an edge set E of size m where every edge
e = (u, v) has a weight wt(e). A Euclidean network
is a geometric network where the weight of the edge
e = (u, v) is equal to the Euclidean distance between
its two endpoints u and v. Let t > 1 be a real number.
We say that G is a t-spanner for V , if for each pair of
points u, v ∈ V , there exists a path in G of weight at
most t times the Euclidean distance between u and v.
The minimum t such that G is a t-spanner for V is
called the stretch factor, or dilation, of G.
Complete graphs represent ideal communication

networks, but they are expensive to build; sparse
spanners represent low-cost alternatives. The weight
of the spanner network is a measure of its sparse-
ness; other sparseness measures include the num-
ber of edges, the maximum degree, and the number
of Steiner points. Spanners for complete Euclidean
graphs as well as for arbitrary weighted graphs find
applications in robotics, network topology design, dis-

∗M.F. supported by Ministry of Science, Research and Tech-
nology of I. R. Iran.

†Department of Mathematics and Computing Science,
TU Eindhoven, 5600 MB, Eindhoven, the Netherlands.
m.farshi@tue.nl

‡Department of Computer Science, Utrecht University,
Utrecht, the Netherlands. panos@cs.uu.nl

§NICTA, Sydney, Australia. National ICT Australia is
funded by the Australian Government’s Backing Australia’s
Ability initiative, in part through the Australian Research
Council. Joachim.Gudmundsson@nicta.com.au

Apx. factor Time complexity Space Sec.

1 O(n3m + n4 log n) O(n) 2

1 O(n4) O(n2) 2

3 O(nm + n2 log n) O(n) 3

2 + ε O(nm + n2(log n + 1/ε3d)) O(n2) 4

Table 1: Complexity bounds for the algorithms pre-
sented in the paper.

tributed systems, design of parallel machines, and
many other areas and have been a subject of consid-
erable research. Recently spanners found interesting
practical applications in areas such as metric space
searching [6] and broadcasting in communication net-
works [1]. The problem of constructing spanners has
received considerable attention from a theoretical per-
spective, see the surveys [3, 7].
Most known algorithms either construct a spanner

given a point set or prunes a given graph, but in many
applications the geometric network is already given,
and the problem at hand is to extend the network
with an additional edge, or edges, while minimizing
the stretch factor of the resulting graph. Surprisingly
this problem has not been studied previously, to the
best of the authors’ knowledge. In this paper we study
the following problem:
Problem. Given a Euclidean graph G construct a
graph G′ by adding an edge to G such that the stretch
factor of G′ is minimized.
We present one exact algorithm and several approx-

imation algorithms. The results presented in this pa-
per are summarized in Table 1.
We will denote by |uv| the Euclidean distance be-

tween u and v, and δG(u, v) denotes the shortest path
between u and v in G with length dG(u, v). Finally,
GP will denote the optimal solution, while tP and t
denotes the stretch factor of GP and G respectively.

2 Finding an optimal solution

We consider the problem of computing an optimal
solution GP . That is, we are given a t-spanner G =
(V,E), and the aim is to compute a tP -spanner GP =
(V,E ∪ {e}).
A näıve approach to decide which edge to add is

to test every possible candidate edge. The number of

29

21st European Workshop on Computational Geometry, 2005

such edges is obviously
(n(n−1)

2 −m
)
= O(n2). Test-

ing a candidate edge e entails computing the stretch
factor of the graph G′ = (V,E ∪ {e}), therefore we
briefly consider the problem of computing the stretch
factor of a given Euclidean graph.
A trivial upper bound is obtained by computing

the All-Pairs-Shortest-Path for the given graph G.
Running Dijkstra’s algorithm – implemented using Fi-
bonacci heaps – gives the stretch factor of G in time
O(mn + n2 log n) using linear space. This algorithm
is quite slow and we would like to be able to compute
the stretch factor more efficiently, but no faster algo-
rithm is known for any graphs except planar graphs,
paths, cycles and trees [4, 5].
Applying the above bounds for computing the exact

stretch factor of a Euclidean graph gives us that GP
can be computed in time O(n3(m + n log n))) using
linear space.
An improvement can be obtained by observing that

when an edge (u, v) is about to be tested we do not
have to check all possible shortest paths between two
vertices x, y ∈ V again, it suffices to check if there
is a shorter path using the edge (u, v). That is, we
only have to check the length of the paths δG(x, u) +
|uv|+δG(v, y) and δG(x, v)+|vu|+δG(u, y), which can
be done in constant time since δG(x, u) and δG(v, y)
already have been computed (provided that we store
this information). Hence by first computing all-pair-
shortest paths of G we obtain:

Lemma 1 Given a Euclidean graph G, an optimal
solution GP can be computed in time O(n4) using
O(n2) space.

3 Adding the bottleneck edge

In this section we study the approach of adding an
edge between a pair of vertices in G that decides the
stretch factor of G.
Consider an optimal solution GP and denote by x

and y the two endpoints of the edge added to G to
obtain GP . Assume that a pair of vertices deciding
the stretch factor of G is (u, v), i.e., the length of the
path between u and v in G is exactly t · |uv|. We call
this edge a bottleneck edge of G. Let GB be the graph
obtained from G by adding the bottleneck edge, and
let tB be the stretch factor of GB.

Lemma 2 Given a Euclidean graph G in Rd it holds
that tB < 3tP .

The main result of this section is:

Theorem 3 Given a Euclidean graph G = (V,E)
one can in O(mn+ n2 log n) time, using O(n) space,
compute a tB-spanner G

′ = (V,E ∪ {e}) where tB <
3tP .

We end this section by giving a lower bound for the
bottleneck approach.

4

δ

1 3

(a) (b) (c)

p1 p2 p3 p4 p5

p6 p7 p8 p9 p10

Figure 1: (a) The input graph G. (b) The bottleneck
solution compared to (c) the optimal solution.

Observation 1 There exists a Euclidean graph G
such that, (2− ε) · tP ≤ tB, for any ε > 0.

Proof. Consider the graph G, as in Fig. 1(a). More
specifically, G is a graph with ten vertices pi = ((i−1)
mod 5, �i/5� · δ), 1 ≤ i ≤ 10, and nine edges (p5, p10)
and (pj , pj+1), for 1 ≤ j ≤ 4 and 6 ≤ j ≤ 9. If
we assume that δ is a very small positive real value
then (p1, p6) is the bottleneck in G and tB = 4+δ

δ , see
Fig. 1(b).
In the case when edge (p2, p7) is added to G, as

shown in Fig. 1(c), the resulting graph has stretch fac-
tor (2+δ)/δ. Combining the upper and lower bounds
gives tB

tP
≥ 4+δ

2+δ = (2 − ε), where the last inequality
follows if we set δ = 2ε

1−ε . �

Hence, we have an upper bound of 3 and a lower
bound of (2− ε) when adding the bottleneck edge to
the input graph.

4 A (2 + ε)-approximation

In this section we will present a fast approximation al-
gorithm which guarantees an approximation factor of
(2+ε). The algorithm is similar to the algorithm pre-
sented in Section 2 in the sense that it tests candidate
edges. Testing a candidate edge entails computing
the stretch factor of the graph. The main difference
is that we will show, in Section 4.1, that only a lin-
ear number of candidate edges needs to be tested to
obtain a solution that gives a (2 + ε)-approximation,
instead of a quadratic number of edges.
Moreover, Section 4.2 shows that the same approx-

imation bound can be achieved by performing only a
linear number of shortest path queries for each can-
didate edge. The candidate edges are selected by us-
ing the well-separated pair decomposition (WSPD)
defined by Callahan and Kosaraju (see [2]). They
showed that a WSPD of size m = O(sdn) can be
computed in O(sdn + n log n) time (s is called the
separation constant of the WSPD).

4.1 Linear number of candidate edges

In this section we show how to obtain a (2 + ε)-
approximation in cubic time.

30

EWCG 2005, Eindhoven, March 9–11, 2005

The approach is straight-forward. First the algo-
rithm computes the length of the shortest path in G
between every pair of points in V . The distances are
saved in a matrix M . Next, the well-separated pair
decomposition is computed. Note that, in Step 5,
the candidate edges will be chosen using the well-
separated pair decomposition. Finally, steps 4–9, each
candidate edge is tested by computing the stretch fac-
tor of the candidate graph.

Algorithm ExpandGraph(G, ε)
Input: Euclidean graph G = (V,E) and a real con-

stant ε > 0.
Output: Euclidean graph G′ = (V,E ∪ {e}).
1. M ←All-Pairs-Shortest-Path dist. matrix of G.
2. {(Ai, Bi)}ki=1 ←WSPD of V with s = 256

ε2 .
3. t′ ←∞.
4. for i←1 to k
5. Select a point ai ∈ Ai and a point bi ∈ Bi.
6. Gi←G = (V,E ∪ (ai, bi)).
7. ti←StretchFactor(Gi,M).
8. if ti < t′

9. then t′ ← ti and e← (ai, bi)
10. return G′ = (V,E ∪ {e}).

Lemma 4 Algorithm ExpandGraph requires
O(n3/ε2d) time and O(n2) space.

It remains to analyze the quality of the solu-
tion obtained from algorithm ExpandGraph. Let
∆(p, q) denote the set of point pairs in V such that
u, v ∈ V belongs to ∆(p, q) if and only if (p, q) ∈
δG∪{(p,q)}(u, v). That is, the set of point pairs for
which the shortest path between them in G∪ {(p, q)}
passes through (p, q).

Lemma 5 For any given constant 0 < λ ≤ 1, there
exists a point pair p, q ∈ V such that for every pair
(u, v) ∈ ∆(p, q) it holds that |uv| ≥ λ

2 |pq|, and the
stretch factor of G∪{(p, q)} is bounded by (2+λ) ·tP .

Note that algorithm ExpandGraph might not test
(p, q) stated in Lemma 5. However, in the follow-
ing lemma it will be shown that algorithm Expand-

Graph will test an edge (a, b) that is almost as good
as (p, q).

Lemma 6 For any given constant 0 < ε ≤ 1 it holds
that the graph G′ returned by algorithm Expand-

Graph has stretch factor at most (2 + ε) · tP .

Proof. According to Lemma 5 there exists an edge
(p, q) such that for every pair (u, v) ∈ ∆(p, q) it holds
that |uv| ≥ λ

2 |pq|, and the stretch factor tH of H =
G ∪ {(p, q)} is bounded by (2 + λ) · tP . Let {Ai, Bi}
be the well-separated pair computed in step 2 of the
algorithm such that p ∈ Ai and q ∈ Bi. Next consider
the candidate edge (ai, bi) tested by the algorithm,

such that ai, p ∈ Ai and bi, q ∈ Bi. For simplicity
of writing we will use a and b to denote ai and bi
respectively.
Our claim is that the stretch factor t′ of G′ = G ∪

{(a, b)} is bounded by (1+ε/4) · tH . Thus setting λ =
ε/4 would then prove the lemma since (2 + ε/4)(1 +
ε/4) < (2 + ε), for ε ≤ 1.

p

q

a

b

x

y

Figure 2: Illustrating the proof of Lemma 6.

Now we are ready to prove the claim. If for all pairs
x, y, (x, y) /∈ ∆(p, q) then the claim is obviously true,
thus we only have to consider the pairs x, y for which
it holds that (x, y) ∈ ∆(p, q), see Fig 2. It holds that:

dG(a, p) = dH(a, p) and dG(b, q) = dH(b, q). (1)

This follows from the fact that the closest pair x′, y′

for which it holds that (x′, y′) ∈ ∆(p, q) has inter point
distance at least |x′y′| ≥ ε

8 |pq|, according to Lemma 5.
It holds that |ap| and |bq| are bounded by 2

s |pq| ≤
ε2

128 |pq| which is less than
ε
8 |pq| since ε < 1. As a

consequence (p, q) /∈ δH(a, p) and (p, q) /∈ δH(b, q).
Hence, claim (1) holds, which we will need below.
Next, we consider the length of the path in G′ be-

tween x and y as illustrated in Fig. 2. Recall that x
and y are two arbitrary points of V for which it holds
that (x, y) ∈ ∆(p, q).

dG′(x, y) ≤ dG(x, p) + dG(p, a) + |ab|+ dG(b, q)
+dG(q, y)

≤ dG(x, p) + dH(p, a) + |ab|+ dH(b, q)
+dG(q, y) (from (7))

< dG(x, p) + (1 + 4/s) · |pq|+ dG(q, y)

+
4tH
s
· |pq| (WSPD property)

≤ dH(x, y) +
64tH
εs
· |xy| (Lemma 5)

= dH(x, y) +
ε

4
· tH · |xy|

The stretch factor of the path in G′ between x and y
is:

dG′(x, y)
|xy| ≤ dH(x, y)

|xy| +
ε
4 tH |xy|
|xy| ≤

(
1 +

ε

4

)
· tH .

�

31

21st European Workshop on Computational Geometry, 2005

We may now conclude this section with the follow-
ing theorem.

Theorem 7 Given a Euclidean graph G = (V,E) in
Rd one can in time O(n3/ε2d), using O(n2) space,
compute a t′-spanner G′ = (V,E ∪ {e}), where t′ ≤
(2 + ε) · tP .

4.2 Speed-up the algorithm

In the previous section we showed that a (2 + ε)-
approximate solution can be obtained by testing a
linear number of candidate edges. Testing each can-
didate edge entails O(n2) shortest path queries. One
way to speed up the computation is to compute the
approximate stretch factor. The problem of comput-
ing the approximate stretch factor was considered by
Narasimhan and Smid in [5]. They showed the fol-
lowing fact:

Fact 1 ([5]) Given a Euclidean graph G and a real
value ε > 0, a (1 + ε)2-approximative stretch factor
of G can be computed by performing O(n/εd) many
(1 + γ)-approximate distance queries, where γ is a
positive constant smaller than ε.

Their idea is to compute a well-separated pair de-
composition of size s = 4(1 + ε)/ε, and then for each
well-separated pair {Ai, Bi} select an arbitrary pair
ai ∈ Ai and bi ∈ Bi. They prove that these are the
only pairs for which the stretch factor needs to be
computed.
We will use their idea to speed up step 7 of the

algorithm from O(n2) to O(n/εd). There will be
two changes in the ExpandGraph algorithm. First,
between steps 2 and 3, the following four lines are
inserted:

- {(Cj ,Dj)}+j=1 ←WSPD of V with s′ = 4(1 + ε)/ε.
- for j ←1 to E
Select a point cj ∈ Cj and a point dj ∈ Dj .

- S = {(c1, d1), . . . , (c+, d+)}

Then, in step 7 of ExpandGraph we will instead
of computing the exact stretch factor of Gi make a
call to ApproximateStretchFactor, or ASF for
short, with parameters Gi, (ai, bi), M , and S. Note
that the number of point pairs in S is bounded by
O(n/εd).

Algorithm ASF(Gi, e,M,S)

Input: Euclidean graphG(V,E), edge e = (a, b) ∈ E,
distance matrix M and a set of point pairs S.

Output: A real value Di.
1. Di ←1
2. for each point pair (cj , dj) in S
3. dist ←min{M [cj , dj],M [cj , a] + |ab| +

M [b, dj],M [cj , b] + |ba|+M [a, dj]}

4. Di ←max{Di, dist/|cjdj |}
5. return Di.

We denote the modified algorithm Expand-

Graph2.

Theorem 8 Given a Euclidean graph G = (V,E)
and a real constant ε > 0 one can inO(nm+n2(log n+
1/ε3d)) time, using O(n2) space, compute a t′-spanner
G′ = (V,E ∪ {e}) such t′ ≤ (2 + ε) · tP .

5 Open problems and Acknowledgements

Several problems remain open.
1. Is there an exact algorithm with running time
o(n4) using linear space?

2. Can we achieve a (1 + ε)-approximation within
the same time bound as in Theorem 8?

3. A natural extension is to allow more than one
edge to be added. Can we generalize our results
to this case?

The authors would like to thank René van Oostrum
for fruitful discussions during the early stages of this
work.

References

[1] K. Alzoubi, X.-Y. Li, Y. Wang, P.-J. Wan, and
O. Frieder. Geometric spanners for wireless ad hoc net-
works. IEEE Transactions on Parallel and Distributed
Systems, 14(4):408–421, 2003.

[2] P. B. Callahan. Dealing with higher dimensions: the
well-separated pair decomposition and its applications.
Ph.D. thesis, Department of Computer Science, Johns
Hopkins University, Baltimore, Maryland, 1995.

[3] D. Eppstein. Spanning trees and spanners. In J.-R.
Sack and J. Urrutia, editors, Handbook of Computa-
tional Geometry, pages 425–461. Elsevier Science Pub-
lishers, Amsterdam, 2000.

[4] S. Langerman, P. Morin, and M. A. Soss. Comput-
ing the maximum detour and spanning ratio of planar
paths trees, and cycles. In Proc. STACS, pages 250–
261, 2002.

[5] G. Narasimhan and M. Smid. Approximating the
stretch factor of Euclidean graphs. SIAM Journal of
Computing, 30(3):978–989, 2000.

[6] G. Navarro and R. Paredes. Practical construction
of metric t-spanners. In Proc. 5th Workshop on Al-
gorithm Engineering and Experiments, pages 69–81.
SIAM Press, 2003.

[7] M. Smid. Closest point problems in computational
geometry. In J.-R. Sack and J. Urrutia, editors, Hand-
book of Computational Geometry, pages 877–935. El-
sevier Science Publishers, Amsterdam, 2000.

32

