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Homotopic Spanners*

Sergio Cabellof

Abstract

We introduce the concept of homotopic spanners in
the plane with obstacles and show lower bounds on
the number of edges that they require. We also pro-
vide a construction based on ©-graphs for construct-
ing homotopic spanners.

1 Introduction

Spanners have become a basic tool for the design of
networks: they are graphs connecting a given set of
sites with the property that the distances between
sites along the graph is similar to the straight-line
distance between the sites. As a basic requirement,
spanners have to be sparse, that is, they need to have
few edges. Typically, we are interested on spanners
that have additional properties, such as bounded de-
gree, small total length, small spanning diameter, etc.

In applications like robot motion planning, we often
deal with the scenario where the sites are in the plane
and we also have a set of obstacles to be avoided. This
naturally leads to the problem of computing spanners
under the influence of polyhedral obstacles, already
considered by Clarkson [6] and Das [7].

We consider here the construction of spanners in
the plane with point-obstacles, but with the addi-
tional condition that between each pair of sites there
is a short path in the spanner which is homotopically
equivalent to the straight-line segment that joins the
sites. Although much work has been done on span-
ners with additional properties, we are not aware of
any research on constructing spanners with topologi-
cal properties.

In the next section we introduce the basic notation
and topological background; we also define precisely
the concept of homotopic spanners. In Section 3 we
show a modification of ©-graphs that can be used to
construct homotopic spanners. In Section 4 we discuss
the computational issues related to the construction.
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In Section 5 we present lower bounds on the number
of edges that any homotopic spanner needs.

2 Notions and problem statement

Topological background. A finite set of points I C
R? will be called point-obstacles. If x,y € R\ K, a
path from x to y is a continuous mapping « : [0, 1] —
R?\ K such that a(0) = z and a(1) = y. If 3 is a path
from y to z, then the concatenation a + 3 of paths «
and (3 is a path from z to z defined as (a + 3)(u) =
a(2u) if 0 < w < % and (a+ 3)(u) = B(2u — 1) if
% < wu < 1. Two paths «, 8 joining the same pair of
points in R? \ K are said to be homotopic, denoted
a ~p2\x B if the loop a — 3 (o concatenated with
the reverse of ) is a contractible curve in R? \ K.
The reader is referred to [8], where also the following
standard results can be found:

Lemma 1 Homotopy of paths has the following
properties:

1. The relation o ~g2\x (3 Is an equivalence rela-
tion.

2. If a ~pave B, @ ~pavie B, and o1) = (1) =
o/ (0) = '(0), then (a + ') ~p2vkc (B+ ).

3. If the paths «, 3 share endpoints and are contai-
ned in a convex subset of R?\ K, then o ~gr2\xk B

Homotopic Spanners. Let S be a point set in R?,
and let G = (S, E') be a graph on S. The graph is rep-
resented in the plane with each vertex represented by
the point itself and with straight-line edges. We use
ss’ to denote both, the edge of G and the straight-line
segment joining s and s’. We associate with each edge
ss’ € FE the length |ss’| of the straight-line segment
joining its vertices. The length of a path « in G is the
sum of the lengths of its edges; we denote it by |a|q.

Fort e R,t > 1, apathin G froms€ Stos €S
is a t-path if its length, is at most ¢ [ss’|. A graph G is
a t-spanner if, for each pair of points s,s’ € S, there
exists a t-path in G from s to s’. We consider the
following generalization.

Definition 1 Given a set of points S C R? and a set
of point-obstacles IC, a K-homotopic t-spanner of S is
a graph G = (S, E) such that, for any s, s’ € S, there
is a t-path « in G such that o and the segment ss'
are homotopic in R? \ K.
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We consider the following problem: given a fixed
number ¢t > 1, construct homotopic ¢-spanners as a
function of S and K such that the number of edges
is the spanner is not too large. We let n = |S| and
k = |K|. We assume that no obstacle in K is aligned
with two points of .S, as otherwise it may be that the
desired spanner does not exist.

3 Construction of homotopic spanners

The idea is to modify the construction of ©-spanners
introduced by Keil and Gutwin [9]. We use a nota-
tion similar to Arya, Mount, and Smid [2] and Bose,
Gudmundsson, and Morin [3]. Consider an angle
0 = 2% for some integer 7" > 8 such that it holds
ty = m < t. For a point s in S, consider the
set of rays Rs9 = {ray;(s) | j € {0,...,T — 1}} ,
where ray;(s) is the straight ray from s with angle j6
with a horizontal line, and R, x = {ray(s,o0) | o € K},
where ray(s,o) is the straight ray starting at s with
direction towards o. Let Ry = Ry U Ry ic.

All the rays in R, have s as starting point, and
therefore they divide the plane into a set of cones,
which we denote by Cs. Since t is a fixed constant,
also T is a constant. Hence, Cs consists of O(1 + k)
cones. Any cone C' € C, has angle at most 6 and it
contains no obstacles in its interior. For a cone C €
Cs, consider any ray r from s contained in C' and let
j be the largest value such that j6 is smaller than the
angle of r; we use ray(C') for the ray ray;(s) € Rs.o.
Observe that the angle between r and ray(C) is at
most 6.

Let the graph ©(S, K, T) be defined as follows:
e The set of vertices of ©(S, K, T) is S;

e For each point s € S, for each cone C' € C;s such
that CN(S\{s}) # 0, we put an edge connecting
s and a point s¢ in C NS\ {s} that has the
orthogonal projection onto ray(C) closest to s.
If there are more than one candidate for so, we
select one which is closest to ray(C).

Observe that ©(S, K, T) has O(nk) edges.

Theorem 2 The graph O(S,KC,T) is a K-homotopic
tg-spanner of S with O(nk) edges.

Proof. Consider two points s,s’ € S, and let C' be
the cone of C4 that contains s’. By construction, we
know that there is a point s. € C such that ss.
is an edge in O(S, /K, T). Using that ray(s,s’) and
ray(s, s.) form an angle at most 0, the same argument
that is used for the standard ©-graph [2] implies

to|scs'| < tglss’| —|ssel- (1)

We show by induction on the rank of the interpoint
distances that for any pair of points s, s’ € S thereis a
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ty-path in ©(S, K, T) that is homotopic to ss’. If the
pair s, s’ is a closest pair, then it holds that s. = s’
and therefore the segment ss’ is in ©(S, K, T).

Consider a pair of points s,s" € S. If s’ = s., then
the segment ss’ is in ©(S, K, T) and there is nothing
to show. Otherwise, s’ # s.. Because of (1), we have
|scs’| < |ss’|, and by induction hypothesis there is a
tg-path ain O(S, K, T) from s, to s’ that is homotopic
to the segment scs’ in R? \ K, that is o ~pa\xc scs’.
Let 8 = ss. + a. We have

Bla = Isse| + lala < [sscl +to |scs’| < to [ss'],

where the last inequality follows from equation (1).
This means that 3 is a tg-path from s to s’.

We next show that 3 ~g2\c ss’, which finishes the
proof. Since 8 = ss. + a and a ~g2\g Scs, we have
B ~r2\k 8Sc + Sc8 because of property 2 in Lemma 1.
Because the triangle Ass’s. is contained in the cone
C € Cs we have KN Ass’'s. = (), and by property 3 in
Lemma 1 we conclude that ss.+s5.5" ~g2\x s5'. Since
~ is an equivalence relation we get 3 ~g2\x s5’. [

For any value ¢ > 1 we can take a constant 7' € N
large enough such that ¢ > cos(QW/T)isin(Q'n'/T)’ and
we conclude that for any fixed ¢ we can construct a

KC-homotopic t-spanner with O(nk) edges.

4 Efficient construction

Consider a set of n sites S and k obstacles K. We
assume that k < n, as otherwise we can just consider
the complete graph as a spanner and we are within
the bound of O(nk) edges for a spanner that we are
aiming to. For a fixed value T', the graph ©(S,KC,T)
can be constructed in O(n?log k) time as follows:

1. for each site s € S

(a) split the sites S\ {s} into the cones of
Cs. This can be done by making a tree-like
structure for the boundary rays R, of Cs in
O(klog k) and locating each point of S\ {s}
in the appropriate cone in O(log k) time per
point. This takes O(klogk + nlogk) =
O(nlogk) time.

(b) for each cone C' € Cy, scan the points and
choose the one that s gets connected to, ac-
cording to the criteria in Section 3. This
takes O(n) time overall because each point
appears at most in two cones of Cs.

We discuss how the graph O(S, /K, T) can be con-
structed in a more efficient way. The idea is to con-
sider all the cones as range spaces and use the stan-
dard trade-offs for simplex range queries; see Ma-
tousek [10] or the survey by Agarwal and Erickson [1].
The main result to be used is the following (we use the
notation O(f(n)) = O(f(n)n) for any € > 0, where
the constant in O(f(n)) may depend on &).



EWCG 2005, Eindhoven, March 9-11, 2005

Lemma 3 For any set S of n points in the plane
and any value n < m < n? there is a family F(S) =
{F1,...,F,} of subsets of S and a data structure D(S)
such that

e p = O(m), that is, F(S) has O(m) members;
o X0_, [Fi| = O(m);

e for any triangle A in the plane, there is a group
F(A) of O(n/y/m) elements of F(S) such that
ANS= UFeF(A)F;

e D(S) has size O(m) and can be constructed in

O(m) time;
e for a query triangle A, the data structure D pro-
vides F(A) C F in O(n/\/m) time.

For a point set S and an angle « let Point(S, )
denote a point in S such that the line passing through
it with angle o 4+ 7/2 has all the points of S to its
right; that is, Point(S,«) is a point with minimum
xz-coordinate after rotating S with angle —a.

We extend the data structure of the previous lemma
as follows: for each set F' € F and each value j =
0,...,7 — 1 we store Point(F,jQT”). For any triangle
A we have

Point(SN A, j2%) € {Point(F, j%%) | F € F(A)},

and using the previous lemma we conclude that we
can find the point Point(S N A,jZ5) in O(n/\/m)
time per triangle A.

The augmented data structure can be constructed
by considering each j = 0,...,7 — 1 and scanning
each F' € F. Since we regard T as a constant,
and each F' € F is considered T times, we need
OTY perl|F|) = O(m) time to construct the aug-
mented data structure.

Consider the construction of ©(S,KC,T) given in
Section 3. For a cone C' with apex s, we have to
find a point in C with the orthogonal projection onto
ray(C) closest to s. Since ray(C) has an angle of the
form jc%” for some jo, it follows that this point is
Point(C' N S, jc2%). Since a cone is a special case
of a triangle, we can use the previous discussion to
conclude that we can find the edge that the cone C
contributes to (S, K, T) in O(n//m) time.

By setting m = n*3k?/3 we can find the edge
corresponding to a cone in O(n/Vni/3k2/3) =
O(n'/3k=1/3) time. This makes sense since we are
assuming k < n. The preprocessing of the data
structure for this case takes O(n*/3k?/3) time. Since
we have to consider O(nk) cones for the construc-
tion of O(S,/KC,T), we can find all the edges in time
O(nk) - O(n'/3k=1/3) = O(n*/3k?/3) time. We sum-

marize.

Theorem 4 Ifk < n, we can construct ©(S,KC,T) in
O(n*/3+¢k2/3) time, for any fixed ¢ > 0.

(n—1)

Figure 1: Lower bound for homotopic spanners when
k = O(n). The dots are sites and the squares are
obstacles.

This result improves the O(n? log k) time construc-
tion given above whenever k = O(n'~¢) for any fixed
e > 0.

5 Lower bounds

The homotopic spanner that we have constructed
above has O(nk) edges, where n is the number of
points and k is the number of point-obstacles. In con-
trast, the standard spanners have only O(n) edges. It
is natural to wonder if (nk) edges are indeed neces-
sary for constructing a homotopic spanner. We have
the following construction for the case k = ©(n).

Lemma 5 For any value of t, 1 < t < 3, and any
value of m, there is a set S of O(n) points and a set
K of O(n) point obstacles such that any K-homotopic
t-spanner of S needs Q(n?) edges.

3—t

Proof. Take e = 5> and consider the configuration

in Figure 1; we have sites
L={(0,je) | j €n]}, R={(1je)|j € [n]},

and obstacles

Ke=A{(.z+je)ljel-1}, (2
Ke={1-%5+ijo)lieh-1} (3
where we use the notation [n] = {1,...,n}. This

configuration has 2n points and 2n — 2 obstacles. It
remains to argue that any homotopic t-spanner has
Q(n?) edges.

The key observation is that any homotopic t-path
from asite [ € L to asite r € R has to use the segment
Ir. Note that if a path « from [ to r is homotopic to
Ir in R?\ (Kz UKRg) and only “crosses” from L to R
once, then the segment Ir has to be part of a.

Assume for the contrary that there is a (Kp Ug)-
homotopic t-spanner G of LU R that does not contain
the edge Ir for some | € L,r € R. Let o be the
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t-path in G from [ to r that is homotopic to Ir in
R2\ (KL UKR). Since a does not contain the segment
Ir, it has to “cross” from L to R (or vice versa) at
least three times. We conclude that |a|g > 3. Using
that |lr| <1+ ne it follows that |a|g/|lr| > t, and G
cannot be a (K U Kg)-homotopic t-spanner.

Since each segment from L to R has to be in a
homotopic t-spanner, then any homotopic t-spanner
has at least n? = Q(n?) edges. O

The above construction for the lower bound gener-
alizes for general values of n, k as Q(n+ min{n?, k*}).
Given n and k, if k& > n then we can take the con-
struction of the previous result and add k — n extra
obstacles; we need Q(n?) = Q(n +min{n?, k?}) edges
in any homotopic t-spanner. If k& < n then take the
construction above with n = k and add the extra
n — k sites far enough not to influence the construc-
tion; we need Q(k?) edges to make a t-spanner of
the first part, and we need n — k — 1 edges to con-
nect all the sites added afterwards, which adds to
Qk*+n —k) = Qk*+n) = Q(n + min{n? k?})
because k < n. We summarize:

Theorem 6 For any value t, 1 < t < 3, and any
values of n, k, there is a set S of O(n) points and a set
K of O(k) point obstacles such that any K-homotopic
t-spanner of S needs Q(n + min{n? k?}) edges.

6 Discussion

We have introduced the concept of homotopic span-
ners in the plane with point-obstacles. It is not clear
how this concept generalizes to higher dimensions,
where all paths are homotopic with respect to point-
obstacles, neither how it generalizes to polyhedral ob-
stacles, where a straight-line segment connecting two
sites may intersect obstacles.

For n sites and k point-obstacles, we have pre-
sented a construction for homotopic spanners that
uses O(nk) edges. However, we can only provide an
example showing that a homotopic spanner may need
Q(n + min{n?, k?}) edges. Our construction is based
on O-graphs. The most natural alternative to con-
sider is the Well Separated Pairs Decomposition of
Callahan and Kosaraju [5, 4], but it does not seems
easy to handle the homotopy classes induced by the
obstacles in a better way than with ©-graphs.

As with normal spanners, we can also be inter-
ested on homotopic spanners with additional prop-
erties, such as small maximum degree, small spanner
diameter, small total weight, etc. As for the maximum
degree D, the construction given above shows that in
the worst case D = Q(k), and so we cannot aim to get
bounded degree. Adapting the ordered ©-spanners of
Bose, Gudmundsson, and Morin [3] to handle point-
obstacles, it is possible to construct spanners with
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O(nk) edges and maximum degree O(klogn). As for
the spanner diameter, a randomized construction sim-
ilar to Arya, Mount, and Smid [2], where we keep all
the obstacles at each stage, will lead to randomized
algorithms for constructing homotopic spanners with
O(nk) edges and O(logn) spanner diameter.
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