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A Note on Simultaneous Embedding of Planar Graphs
(Abstract)∗

Emilio Di Giacomo† Giuseppe Liotta†

1 Introduction

Let G1 and G2 be a pair of planar graphs such that
V (G1) = V (G2) = V . A simultaneous embedding [6]
Ψ = (Γ1,Γ2) of G1 and G2 is a pair of crossing-free
drawings Γ1 and Γ2 of G1 and G2, respectively, such
that for every vertex v ∈ V we have Γ1(v) = Γ2(v).
If every edge e ∈ E(G1) ∩ E(G2) is represented with
the same simple open Jordan curve both in Γ1 and in
Γ2 we say that Ψ is a simultaneous embedding with
fixed edges. If the edges of G1 and G2 are repre-
sented with straight-line segments in Γ1 and Γ2 we
say that Ψ is a simultaneous geometric embedding.
The existence of simultaneous geometric embeddings
for pairs of paths, cycles, and caterpillars is shown
in [2], where also counter-examples for pairs of gen-
eral planar graphs, pairs of outerplanar graphs, and
triples of paths are presented.
Concerning the the computation of (non-geometric)

simultaneous embeddings, Erten and Kobourov [6]
presented an O(n)-time algorithm to simultaneously
embed any pair of planar graphs on the O(n2)×O(n2)
grid with at most three bends per edge, where n is the
number of vertices of G1 and G2. If the two graphs
are trees then the number of bends per edge can be
reduced to one. Furthermore, in [6] an O(n)-time al-
gorithm to compute a simultaneous embedding with
fixed edges of a tree and a path on the O(n)×O(n2)
grid with no bends on the path-edges and at most one
bend per edge on the tree-edges is described.
In this note we revisit the elegant technique of Erten

and Kobourov [6] to present some new results on si-
multaneous embeddings with fixed edges. We prove
that the pairs outerplanar graph - path and outer-
planar graph - cycle admit a simultaneous embedding
with fixed edges and at most one bend per edge. For
the pair outerplanar graph - path, the edges of the
path are straight-line segments. We also present some
extensions of the results in [6] about simultaneous em-
beddings of planar graphs that are immediate conse-
quence of existing literature. For reasons of space
some proof are sketched or omitted.
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2 Preliminaries

The algorithms to compute a simultaneous embedding
of a pair of planar graphs and of a pair of trees pre-
sented in [6] are an elegant combination of the tech-
nique by Kaufmann and Wiese [7] for point-set em-
bedding and of the simultaneous embedding strategy
for two paths by Brass et al. [2]. In this section, we
first recall the main ideas of Erten and Kobourov for
simultaneous embedding of two planar graphs G1 and
G2 and then make a couple of observations on how to
combine these ideas with known literature in order to
extend some of the results in [6].
Suppose first that both G1 and G2 are Hamilto-

nian. Let C1 and C2 be two Hamiltonian cycles of
G1 and G2, respectively. For each cycle, one arbi-
trarily chosen edge (called closing edge in the follow-
ing) is removed in order to obtain two Hamiltonian
paths P1 and P2 for G1 and G2, respectively. Paths
P1 and P2 are simultaneously embedded by the algo-
rithm of Brass et al. [2]. Erten and Kobourov add
the remaining edges of G1 and of G2 to the drawing
by using the technique of Kaufmann and Wiese [7].
Namely, let δ be the maximum slope of a segment of
the path defined by P1. The closing edge for cycle C1

is drawn as a polyline with two segments whose slopes
are δ′ and −δ′, where δ′ = δ+ ε for an arbitrary small
epsilon > 0. The remaining edges of G1 are divided
into edges that are inside C1 and edges that are out-
side C1. The edges that are inside (outside) C1 are
drawn inside (outside) C1 as polylines each consisting
of two segments having slopes δ′ and −δ′, respectively.
Possible overlaps between segments corresponding to
different edges can be removed by a simple rotation
technique described in [7]. The drawing of G2 is com-
puted with an analogous procedure starting form the
drawing of path P2. Erten and Kobourov show that
the overall time complexity of the procedure is O(n)
where n is the number of vertices in G1 and in G2;
also, if the bends may not be at integer grid points,
the size of the grid is O(n2)×O(n2) (O(n3)×O(n3)
else).
If G1 and G2 are not sub-Hamiltonian, then Erten

and Kobourov use the O(n) algorithm by Chiba and
Nishizeki [3] to augment the graphs in order to make
them Hamiltonian. The augmentation is done by
adding dummy edges and by splitting each edge with
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at most one dummy vertex. A simultaneous embed-
ding of the augmented graphs can now be computed
in linear time be the technique described above. After
such an embedding is computed the dummy edges are
removed and the dummy vertices are treated as bend
points. As a result, every edge (u, v) that is split by a
dummy vertex w ends up having at most three bends,
one between u and w, one at w and one between w
and v. Observe that the bend at w can be avoided if
the two segments of (u,w) and (w, v) incident on w
have the same slope. In [7] it is described how to ro-
tate the segments incident on w so to avoid the third
bend. However this rotation increases the area of the
drawing, and Erten and Kobourov do not apply the
rotation. As a result, they prove the existence of a
simultaneous embedding of two planar graphs in an
integer grid of size O(n2) × O(n2) and with at most
three bends per edge (or O(n3)×O(n3) if bends are
at integer grid points). In [5] it is showed a variant of
the point-set embedding algorithm of Kaufmann and
Wiese [7] that makes it possible to never have a third
bend on the split edges and thus it does not require
any rotation of the edges. A combination of the re-
sults in [5] and of the technique in [6] leads therefore
to the following improvement of the result by Erten
and Kobourov.

Theorem 1 Let G1 and G2 be two planar graphs
such that V (G1) = V (G2) = V . G1 and G2 can
be simultaneously embedded in O(n) time, using at
most two bend per edge, on an integer grid of size
O(n2)×O(n2), where n = |V |.

The approach of Erten and Kobourov is such that
if the two graphs can be augmented without adding
dummy vertices, then we have a simultaneous embed-
ding with at most one bend per edge. In the spe-
cial case of trees, they augment the graphs to become
Hamiltonian without using dummy vertices. We re-
call that every sub-Hamiltonian graph has the prop-
erty that it can be augmented with only edge addi-
tion to become Hamiltonian. Although it is NP-hard
to recognize the sub-Hamiltonian graphs, there are
some families of graphs that are known to be sub-
Hamiltonian and for which the edge augmentation can
be found in time proportional to the number of the
vertices. Among such families, we mention here out-
erplanar graphs and series-parallel graphs (see, e.g.,
[1, 4]). We can therefore extend Theorem 3 of [6] to
families of graphs other than trees.

Theorem 2 Let G1 and G2 be two graphs such that
V (G1) = V (G2) = V and Gi (i = 1, 2) is either a
series-parallel graph or an outerplanar graph. G1 and
G2 can be simultaneously embedded in O(n) time,
using at most one bend per edge, on an integer grid
of size O(n2)×O(n2), where n = |V |.

3 Simultaneous Embedding with Fixed Edges

In [6] the following result is proved.

Theorem 3 [6] Let T be a tree and let P be a simple
path such that V (T ) = V (P ) = V . T and P can be
simultaneously embedded with fixed edges in O(n)
time, using at most one bend for each edge of T and
zero bends for each edge of P , on an integer grid of
size O(n)×O(n2), where n = |V |.

The proof of Erten and Kobourov behind Theo-
rem 3 exploits the technique described in Section 2.
Namely, they present a linear-time recursive strategy
for computing a Hamiltonian path PT of the tree that
contains all edges shared by P and T and then use
such a Hamiltonian path and path P itself to compute
a simultaneous embedding by the technique described
Section 1. Since P and PT are drawn with straight-
line segments and the remaining edges of T have at
most one bend, the theorem follows. It is worth re-
marking that the key idea in the proof of Erten and
Kobourov for Theorem 3 is reducing the tree-path si-
multaneous embedding problem with fixed edges to
the combinatorial question of finding an augmented
Hamiltonian cycle in the tree with the additional con-
straint that the cycle must contain all edges of P . In
this section we use the same approach of Erten and
Kobourov to extend Theorem 3.
We need some more definitions. A k-pages book

embedding φ(G) of a graph G is a crossing-free draw-
ing of G such that the vertices of G are drawn
as points along a straight line l called spine, and
each edge is drawn as a simple Jordan curve on one
among k half-planes, called pages, having l as com-
mon boundary. The minimum number of pages over
all book embeddings of a graph G is called the page
number of G. A graph has page number one if and
only if it is outerplanar and that a graph has page
number two if and only if it is sub-Hamiltonian [1].
Let v0, v1, . . . , vn−1 be the vertices of G in the order

they are encountered along the spine from left to right.
We say that v0, v1, . . . , vn−1 is the linear ordering in-
duced by φ(G). An edge e1 = (vi, vj) ∈ E(G) is said to
be nested inside another edge e2 = (uh, vl) ∈ E(G) in
φ(G) if e1 and e2 are drawn on the same page and
h < i < j < l. A r-rainbow is a set of r edges
e0, e1, . . . , er−1 ∈ E(G) such that ei+1 is nested in-
side ei (0 ≤ i < r − 1). Edges e0 and e1 are called
the top edge and the second edge of the r-rainbow,
respectively.
In what follows we are interested in book embed-

dings on at most two pages. In this case the book
embedding is a planar drawing and the two pages
are the two half-planes defined by the straight line
representing the spine. We assume that the spine is
drawn as an horizontal straight line and we refer to
the two pages as the top page and as the bottom page.
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Also, when we consider a 1-page book embedding we
shall assume that the only page is the top page. The
next two lemmas use 1-page book embeddings to show
some combinatorial properties of outerplanar graphs.

Lemma 4 Let G be an outerplanar graph, let
φ(G) be a 1-page book embedding of G, and let
v0, v1, . . . , vn−1 the linear ordering induced by φ(G).
Let E′ ⊆ E(G) be a set of disjoint edges and let
e∗ = (vi, vj), 0 < i < j < n − 1 be an edge of E′.
It is possible to add edges to G in such a way that the
augmented graph G′ is planar and contains a path π
with the following properties: (i) π starts at vi and
ends at vj+1; (ii) π contains e∗, all the edges of E′

nested inside e∗, and all vertices vl with i < l < j+1.

Sketch of Proof. Let φ′ be the 1-page book embed-
ding obtained by deleting from φ(G) all edges of E(G)
that do not belong to E′. For each edge e ∈ E′, the
weight of e is the maximum r such that there exists
a r-rainbow in φ′ having e as its top edge; if e is not
the top edge of any rainbow, the weight of e is 0.
We prove the statement by induction on the weight

w of e∗. If w = 0, i.e. no edge of E′ is nested inside
e∗, we proceed as illustrated in Figure 1: if there is no
vertex between vi and vj along the spine, we choose
π = vi, vj , vj+1; otherwise, π is obtained by concate-
nating the path vi, vj with the path vj , vj−1, . . . , vi+1,
and with edge (vi+1, vj+1). The edges of π that are
not in φ(G) are augmenting edges. We draw all the
augmenting edges on the bottom page. Let φ(G′) be
the augmented drawing and let G′ be the correspond-
ing augmented graph. We prove that φ(G′) is a 2-
page book embedding and therefore G′ is planar. The
edges in the top page do not cross each other because
they are all edges of G and do not cross in φ(G). All
edges in the bottom page connect pairs of consecutive
vertices except, possibly, edge (vi+1, vj+1). It follows
that there cannot be any crossing in the bottom page
and hence G′ is planar.

e*

vi vi+1 vj−1vj vj+1

Figure 1: The base case of Lemma 4

Suppose now that w = k ≥ 1 and that the
statement is true for w < k. Let φ′ be the 1-
page book embedding obtained by deleting from φ(G)
all edges of E(G) that do not belong to E′. Let
e0 = (vi0 , vj0), e1 = (vi1 , vj1), . . . eh = (vih−1 , vjh−1)
(i0 < i1 < · · · < ih−1) be the second edges of the
rainbows that have e as their top edge. The weight
of each edge em (0 ≤ m ≤ h − 1) is at most k − 1

and by inductive hypothesis there exists a path πm

from vim to vjm+1 that contains em, all edges of E′

that are nested inside em, and all vertices between vim

and vjm+1. Also, since the edges of E′ are disjoint we
have that i0 < j0 < i1 < j1 < · · · < ih−1 < jh−1.
Denote as πm the path with the same edges as πm

that starts at vjm+1 and ends at vim (that is, πm is
the “reverse” of πm). We choose π as depicted in
Figure 2, i.e. π = vi,vj ,vj−1,. . . ,πh−1,. . . ,πh−2,. . . ,
π0,. . . ,vi+1,vj+1, where the edges of π that are not in
G are augmenting edges. Path π starts at vi, ends
at vj+1, it contains e∗, and by induction it contains
all vertices between vi and vj+1 and all edges of E′

nested inside e.
Let φ(G′) be the augmented drawing and let G′ be

the corresponding augmented graph. We prove that
φ(G′) is a 2-page book embedding and therefore G′

is planar. The edges in the top page do not cross
each other because they are all edges of G and do
not cross in φ(G). Let d1 and d2 be two edges in
the bottom page both connecting two vertices that
are non-consecutive along the spine. If d1 and d2 are
both edges of a path πm (0 ≤ m ≤ h−1), then they do
not cross by induction. If d1 and d2 are edges of two
different paths πm1 and πm2 (0 ≤ m1 < m2 ≤ h− 1),
then the vertices of πm1 are before those of πm2 and
d1 and d2 do not cross. The only edge in the bottom
page that connects vertices that are non-consecutive
along the spine and that does not belong to ∪h−1

m=0πm

is (vi+1, vj+1). Let d1 be the edge (vi+1, vj+1) and let
d2 be an edge of a path πm (0 ≤ m ≤ h− 1); we have
vi+1 < vim < vjm < vj+1, which implies that the two
edges do not cross and hence G′ is planar. �

e*

vi vi+1 vj−1vj vj+1
π 0 π h−1

...

Figure 2: The inductive case of Lemma 4

Lemma 5 Let G be an outerplanar graph and let
E′ ⊆ E(G) be a set of disjoint edges. It is possible
to add edges to G in such a way that the augmented
graph G′ is planar and has a Hamiltonian cycle con-
taining all edges of E′.

Sketch of Proof. Since G is outerplanar it admits a
1-page book embedding φ(G). Let v0, v1, . . . , vn−1 the
linear ordering induced by φ(G). It can be proved [1]
that one can always compute φ(G) such that v0

and vn−1 are not connected by an edge of E(G) ∩
E(P ). Let e0 = (vi0 , vj0), e1 = (vi1 , vj1), . . . eh−1 =
(vih−1 , vjh−1) (0 < i0 < i1 < · · · < ih−1 < n − 1)

209



21st European Workshop on Computational Geometry, 2005

be the edges of E′ not nested inside any other edge
of E′. Since the edges of E′ are disjoint then i0 <
j0 < i1 < j1 < · · · < ih−1 < jh−1. Also, by
Lemma 4 for each edge em (0 ≤ m ≤ h − 1) there
exists a path πm from vim to vjm+1 that contains
edge em, all edges of E′ nested inside em, and all
vertices between vim and vjm+1. We choose a cycle
C = v0, v1, . . . , π0, . . . , π1, . . . , πh−1, vn−2, vn−1, v0,
where the edges of C that are not in G are augment-
ing edges. By Lemma 4, C contains all vertices of G
and all edges of E′. �

Lemma 6 Let G be an outerplanar graph and let P
be a simple path such that V (G) = V (P ) = V . It
is possible to add edges to G in such a way that the
augmented graph G′ is planar and has a Hamiltonian
cycle containing all edges of E(G) ∩ E(P ).

Sketch of Proof. The subgraph of G induced by the
edges of E(G)∩E(P ) is a forest of paths; we denote by
π0, π1, . . . πh−1 the paths of this forest. Let φ(G) be a
1-page book embedding of G and let v0, v1, . . . , vn−1

the linear ordering induced by φ(G). As in Lemma 5,
we can assume that v0 and vn−1 are not connected by
an edge of E(G)∩E(P ). LetH be the graph defined as
follows. The vertices of H are all vertices of G except
those having two edges of E(G) ∩ E(P ) incident on
them; for each path πm with endvertices vi and vj , H
has the edge em = (vi, vj) (0 ≤ m ≤ h− 1).
Graph H is a set of disjoint edges and we can apply

Lemma 5 to H with E′ = E(H). We obtain an aug-
mented graphH ′ that is planar and has a Hamiltonian
cycle D containing all edges of H (actually, cycle D
coincides with H ′ since E′ coincides with E(H)). The
technique in the proof of Lemma 5 defines H ′ by com-
puting a 2-page book embedding φ(H ′) of H ′. φ(H ′)
is computed by adding edges to a given 1-page book
embedding φ(H) of H; we assume here that φ(H) is
obtained from φ(G) by deleting the vertices and edges
of G that are not in H and by adding in the top page
the edges of H that replace each πm (0 ≤ m ≤ h−1).
Let G′ be the graph obtained by adding to G the aug-
menting edges of H ′ and let C be the cycle obtained
by replacing each edge em of H in H ′ with the cor-
responding path πm (0 ≤ m ≤ h − 1). Cycle C is a
simple cycle of G′ and by construction it contains all
vertices of G and all edges of E(G) ∩E(P ).
Consider the drawing φ(G′) of G′ defined as follows.

The vertices of G′ are drawn as in φ(G); the edges of
E(G′) ∩ E(G) are drawn as in φ(G), i.e. they are
drawn on the top page; the edges of E(G′) ∩ E(H ′)
are drawn as in φ(H ′), i.e. they are drawn on the
bottom page. We have that the edges above the spine
do not cross since they do not cross in φ(G) and the
edges below the spine do not cross since they do not
cross in φ(H ′). It follows that φ(G′) is a 2-page book
embedding and therefore G′ is planar. �

Theorem 7 Let G be an outerplanar graph and let
P be a simple path such that V (G) = V (P ) = V .
G and P can be simultaneously embedded with fixed
edges in O(n) time, using at most one bend for each
edge of G and zero bends for each edge of P , on an
integer grid of size O(n)×O(n2), where n = |V |.

Theorem 7 can be extended to the pair outerplanar
graph - cycle.

Theorem 8 LetG be an outerplanar graph and let C
be a simple cycle such that V (G) = V (C) = V . G and
C can be simultaneously embedded with fixed edges
in O(n) time, using at most one bend per edge, on an
integer grid of size O(n2)×O(n2), where n = |V |.

Theorems 7 and 8 can be extended to the more gen-
eral case in which the two graphs have only a subset
of their vertices in common. Let G1 and G2 be a pair
of planar graphs such that V (G1) ∩ V (G2) = V . A
simultaneous embedding with fixed edges of G1 and of
G2 is a a pair of crossing-free drawings Γ1 and Γ2

of G1 and G2, respectively, such that for every ver-
tex v ∈ V we have Γ1(v) = Γ2(v) and for every edge
e ∈ E(G1) ∩ E(G2) we have Γ1(e) = Γ2(e).

Theorem 9 Let G1 be an outerplanar graph and let
G2 be either a simple path or a simple cycle such that
V (G1) ∩ V (G2) = V . G1 and G2 can be simultane-
ously embedded with fixed edges in O(n) time, using
at most one bend per edge, on an integer grid of size
O(n2) × O(n2), where n = |V (G1) ∪ V (G2)|. If G2

is a simple path its edges are drawn as straight-line
segments and the grid size is O(n)×O(n2).
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