
EWCG 2005, Eindhoven, March 9–11, 2005

Spanning Trees with Few Crossings in Geometric and Topological Graphs

Christian Knauer∗ Étienne Schramm† Andreas Spillner‡ Alexander Wolff†

Abstract

We study the problem of computing a spanning tree
in a connected topological graph such that the num-
ber of crossings in the spanning tree is minimum. We
show it is NP-hard to find a good approximation of
the minimum number of crossings even in geometric
graphs. On the other hand we show that the prob-
lem is fixed-parameter tractable and present a mixed-
integer linear program formulation.

1 Introduction

Let G(V,E) be an undirected graph that is embedded
in the plane, so that no two edges share an unbounded
number of points. We call G a topological graph. If
all edges are straight-line embedded, then G is called
a geometric graph.
A crossing {e, e′} is a pair of edges such that

e ∩ e′ %⊆ V . We call µee′ = |(e ∩ e′) \ V | the multiplic-
ity of the crossing {e, e′}. Let X ⊆

(
E
2

)
be the set of

pairs of crossings in E. Note that c edges intersect-
ing in a single non-endpoint give rise to

(
c
2

)
crossings.

We will use n, m, and k as shorthand for the car-
dinalities of V , E, and X, respectively. We will use
the notation G(V,E,X) if we want to emphasize the
connection between G and X. We define the weighted
number of crossings of a subgraph G(V,E′,X ′) of G
as

∑
{e,e′}∈X′ µee′ .

In this paper we study the problem of computing a
spanning tree of a given connected topological graph
such that the weigted number of crossings in the tree
is minimum.
Kratochvil et al. [2] have shown that for topologi-

cal graphs it is NP-hard to decide whether they con-
tain crossing-free subgraphs of certain types, such as
cycles, u–v paths, maximum matchings, or spanning
trees. Jansen and Woeginger [1] have strengthened
the last result by showing that it is even NP-hard
to decide whether or not a geometric graph has a
crossing-free spanning tree.

∗Institute of Computer Science, Freie Universität Berlin,
Germany, christian.knauer@inf.fu-berlin.de

†Fakultät für Informatik Universität Karlsruhe, Germany,
http://i11www.ira.uka.de/people. Supported by grant
WO 758/4-1 of the German Science Foundation (DFG).

‡Institute of Computer Science, Universität Jena, Germany,
spillner@minet.uni-jena.de

x2x1 x3 x4

x1 ∨ x2 ∨ x4

x2 ∨ x3 ∨ x4

x1 ∨ x3 ∨ x4

Figure 1: Overall structure of GF .

That result does not rule out the existance of
efficient constant-factor approximation algorithms.
However, as we will show in Section 2, such algorithms
do not exist unless P = NP. So we turned our atten-
tion to other possible ways to attack the problem: in
Section 3 we show that the problem under considera-
tion is fixed-parameter tractable with k being the pa-
rameter and in Section 4 we present a mixed-integer
linear program (MIP) formulation. We conclude in
Section 5.

2 Hardness of approximation

Let φ(G) be 1 plus the minimum number of crossings
in a spanning tree of a geometric graph G. The main
result of this section is the following theorem.

Theorem 1 Given geometric graph G, it is NP-hard
to approximate φ(G) within a factor of k1−ε for any
ε > 0.

Note that it is trivial to give a factor-(k + 1)-
approximation and since a geometric graph is also a
topological graph, theorem 1 obviously remains valid
for topological graphs.
We obtain this result by a reduction from planar

3SAT [3]. Our reduction maps a given planar 3SAT
formula F to a geometric graph GF such that GF

has a plane spanning tree iff F has a fulfilling truth
assignment. The overall structure of GF is indicated
in Figure 1 for F = (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧
(x1 ∨ x3 ∨ x4).
We have a gadget for every variable occuring in F .

These gadgets are arranged along a horizontal line E.
We further have a gadget for every clause in F which is
connected with every variable occuring in the clause.
This gadget looks like a three-legged comb.

195

21st European Workshop on Computational Geometry, 2005
to

pr
ev

io
us

va
ri

ab
le

ga
dg

et

to
ne

xt
bo

x

to clause to clause

to clause to clause to clause

to clausex x

x x x

x

c1

c′1

c2

c′2

c3

c′3

Figure 2: Part of a variable gadget.

true false

x x x x

x x x x

Figure 3: Spanning trees encoding true and false.

Now let’s have a closer look at the gadgets. The
leftmost part of the gadget for a variable x is shown
in Figure 2. The gadget for x consists of at most
twice as many boxes as there are clauses in F that
contain x. Three of these boxes are drawn with solid
edges in Figure 2. The dotted edges that emanate
from the boxes fulfill three tasks. First they connect
consecutive boxes within one variable gadget. Second
they connect the first and last box of variable gadgets
that are consecutive on the line E. Third they con-
nect boxes to clause gadgets. Each dotted edge that
connects a variable gadget to a clause gadget is asso-
ciated with a literal. This literal will be true if the
dotted edge is part of the spanning tree of GF .
The intended way of simulating the truth assign-

ment of the variable x is indicated in Figure 3. The
Boolean values of x correspond to the two ways in
which a crossing-free spanning tree can be chosen
among the edges of the gadget of x. Note that only
every other box can be connected to a clause gadget
above (below) E. This way we ensure that according to
the value of x either only the dotted edges associated
to positive literals or only the dotted edges associated
to negative literals can connect x to clause gadgets.
Not all points of type ci or c′i in Figure 2 are used—
only those where the variable is in fact connected to
a clause gadget in GF . For example, the gadget for
x2 in Figure 1 consists of three boxes, but only the
points c1 and c3 are used.
A clause gadget is shown in Figure 4(a). The three

boxes in the lower part of the figure belong to the
gadgets of those variables that form the clause. Note
that the clause gadget is connected to the rest of GF

only via the dotted edges that go into these three

(b)

x x

xx

(a)

clause

Figure 4: Clause gadget and modified variable gadget.

boxes. Thus GF has a crossing-free spanning tree only
if at least one of the three literals in the clause is true.
Up to this point our construction only proves that

deciding whether or not a geometric graph has a
crossing-free spanning tree is NP-hard. However, our
construction is designed to allow us to apply a simple
trick that yields the desired hardness of approxima-
tion. We substitute certain solid edges in every box
in every variable gadget with z new edges. This is
indicated for z = 3 in Figure 4(b).
If we set z to a polynomial in the length of F with

large enough degree, our reduction remains polyno-
mial and Theorem 1 is an immediate consequence of
the following lemma.

Lemma 2 If F has a satisfying truth assignment
then φ(GF) = 1, else φ(GF) ≥ z.

Proof. First suppose F has a satisfying truth assign-
ment. Then we select edges for a spanning tree of GF

in every variable gadget as indicated in Figure 3 ac-
cording to the satisfying truth assignment. Since in
every clause of F at least one literal is true under the
satisfying truth assignment it is possible to connect
every clause gadget in a spanning tree without any
crossings. Thus φ(GF) = 1.
Now suppose F does not have a satisfying truth

assignment. Consider a box B after substitution of
edges as in Figure 4(b). Then B has z solid horizontal
edges above (below) E and at most four dotted vertical
edges above (below) E that intersect the former. Let T
be a spanning tree of GF with the minimum number
of crossings. Let vtop (vbot) be the number of vertical
edges in T that are above (below) E and intersect B.
Similarly, let htop (hbot) be the number of horizontal
edges in T that are above (below) E and belong to B.
Since the vertices on the right of the box can only be
connected to the rest of the graph via the solid top or
bottom edges, we have htop + hbot ≥ z. Now suppose
vtop ≤ vbot. Then there are vtophtop + vbothbot ≥
vtopz crossings. If we remove all solid bottom edges
of B from T and instead use all solid top edges and

196

EWCG 2005, Eindhoven, March 9–11, 2005

all solid vertical edges of B, we get a spanning tree
T ′ which does not have more crossings than T . So
we may suppose that in every box of GF all the solid
top edges or all the solid bottom edges are in T . We
distinguish two cases.
Case 1: There are two consecutive boxes in a vari-

able gadget such that from both boxes all the solid
top edges (all the solid bottom edges) are in T . Then
there are at least z crossings in T between the solid
top edges in the two boxes and the dotted edges that
connect these two boxes. Thus φ(GF) ≥ z.
Case 2: There are no two consecutive boxes in a

variable gadget such that from both boxes all the solid
top edges (all the solid bottom edges) are in T . Then
according to Figure 3 we derive a truth assignment
β from the structure of T inside every variable gad-
get. Since F does not have a satisfying truth assign-
ment there is a clause C in F which is false under β.
Consider the clause gadget associated with C. This
clause gadget must be connected in T with the rest
of GF which leads to at least z crossings. Thus again
φ(GF) ≥ z. �

Instead of searching for a spanning tree with a min-
imum number of crossings one could also ask for a
crossing-free spanning forest of a geometric graph G
with the minimum number φ′(G) of trees. But using a
similar reduction as the one sketched above we obtain
the following theorem.

Theorem 3 It is NP-hard to approximate φ′(G)
within a factor of n1−ε for any ε > 0.

3 Fixed-parameter tractability

We first show that deciding whether or not a topolog-
ical graph G has a crossing-free spanning tree is fixed-
parameter tractable where we use the total number of
crossings k as fixed parameter. We set EX =

⋃
X.

Thus EX contains exactly those edges that partici-
pate in a crossing. Note that |EX | ≤ 2k and observe
that G has a crossing-free spanning tree iff G has a
crossing-free connected spanning subgraph. Thus it
is sufficient to examine all maximal crossing-free sub-
graphs of G and check whether one of them is con-
nected. To this end we proceed as follows:

1. Remove all edges in EX from G. The resulting
graph G′ = (V,E′) is crossing-free.

2. For all maximal crossing-free subsets H ⊆ EX

check whether the graph G′ ∪H = (V,E′ ∪H) is
connected.

Note that in the second step we can actually shrink
each connected component of G′ to a single vertex. If
G′ has more than k+1 connected components, adding
the at most k edges in H cannot make G′ connected.

Therefore we only have to consider a graph with O(k)
vertices.
It can easily be shown by induction on k that there

are at most 2k maximal crossing-free subsetsH. Since
detecting all the crossings in G can be done in O(k+
m logm) time and generating and checking a subset
H can be done in O(k) time, we have the following
theorem.

Theorem 4 We can decide in O(m logm+k2k) time
whether a topological graph has a crossing-free span-
ning tree.

Checking not only the crossing-free subsets of EX

but all subsets we obtain an algorithm that finds a
spanning tree with the minimum weighted number of
crossings.

Theorem 5 Given a topological graph we can com-
pute in O(m logm + k4k) time a spanning tree with
the minimum weighted number of crossings.

In the remainder of this section we sketch how to
speed up the decision algorithm in the special case
that the crossings in X are pairwise disjoint.
Suppose G′ has at most k+1 connected components

and we have shrunken each to a single vertex. Our
new algorithm distinguishes two cases. Let α = 4

5
and r be the number of connected components of G′.

Case 1: r ≤ αk. If G has a connected crossing-
free spanning subgraph at all, then there are at least
2(1−α)k crossing-free subsetsH ⊆ EX such thatG′∪H
is connected. This can be seen as follows: Suppose
there is a crossing-free subset F ⊆ EX that makes
G′ connected. Then we can choose such an F with
|F | ≤ r − 1 < αk. Let XF = {c ∈ X | c ∩ F = ∅}.
Since the elements of X are pairwise disjoint we have
|XF | > (1 − α)k. If we select one edge from each
crossing in XF and add these edges to F the resulting
set of edges is still crossing-free. There are at least
2(1−α)k possible ways to select edges. Thus there are
at least 2(1−α)k crossing-free subsets H ⊆ EX such
that G′ ∪H is connected.
This suggests the following randomized algorithm:

From each element of X we randomly select one edge
and check if the resulting crossing-free graph is con-
nected. If the given geometric graph G has a crossing-
free connected spanning subgraph, the probability of
success is at least 2(1−α)k/2k = 2−αk. Thus O(2αk)
iterations suffice with high probability and the ex-
pected running time is O(m logm + k2αk) with high
probability.
Case 2: r > αk. We define the degree of a con-

nected component C of G′ as the number of edges in
EX that are incident to a vertex that belongs to C.
We observe that for each component of degree one

there is exactly one edge in EX to connect this com-

197

21st European Workshop on Computational Geometry, 2005

ponent to the rest of G′. Thus this edge must be
selected for any connected spanning subgraph of G.
Furthermore we can assume that for every crossing

c ∈ X none of the two edges in c connects vertices in
the same component ofG′, since such an edge could be
deleted which would also make the crossing c vanish.
Next we argue that if r > αk there is always at

least one component of G′ that has degree at most 4.
For if all components had degree at least 5, we would
get 4k ≥ 2|EX | ≥ 5r > 5αk = 4k.
Thus our algorithm selects a component C of G′

such that the degree d of C is at most 4. The key
observation is that one of the d edges in EX incident
to a vertex of C must be chosen to connect C to the
rest of G′. This means that we do not have to try
all 2d subsets of those d edges but only 2d − 1. This
observation can be made more precise by a detailed
case analysis which we omit in this abstract. The
case analysis yields the following recurrence for the
running time T (k) of our algorithm:

T (k) ≤ 15T (k − 4) +O(1)

This solves to T (k) ∈ O(15k/4). To summerize we
state the following theorem.

Theorem 6 There is a Monte Carlo algorithm with
one sided error and expected running time in
O(m logm + k1.968k) which decides whether a given
geometric graph with pairwise disjoint crossings has
a crossing-free spanning tree.

4 A Mixed-Integer Linear Program

In this section we give a MIP formulation for the prob-
lem of computing a connected spanning subgraph G′

with the minimum weigted number of crossings for a
given topological graph G(V,E). We introduce a vari-
able xee′ that is designed to punish a crossing between
the edges e and e′.
Our objective function is

min
∑

{e,e′}∈X

µee′ xee′ . (1)

We have the following constraints. We introduce a
variable ye for each edge e ∈ E that is 1 iff e will be
part of G′. For each pair {e, e′} ∈ X we require:

xee′ ≥ 0 and xee′ ≥ ye + ye′ − 1 (2)

Given our objective function (1) and the fact that
ye will be forced to lie in {0, 1}, Constraint (2) is
equivalent to xee′ = min{ye, ye′}. In other words if we
manage to make sure that the graph G′ = (V,E′) with
E′ = {e ∈ E | ye = 1} is connected, then the variables
of type xee′ in fact count the number of crossings in
G′.

We model connectivity by fixing an arbitrary vertex
s ∈ V as sink and then introducing flow between s and
each other vertex t ∈ V \ {s}. The flow is modeled
by a 0–1 variable f t

e for each edge e ∈ E. First we
make sure that for each choice of t, the source s and
the sink t have exactly one edge with flow:∑

e incident to s

f t
e =

∑
e incident to t

f t
e = 1 (3)

Note that if a graph contains an s–t path, then that
graph also contains an s–t path that visits each vertex
at most once. So we simply ensure that each vertex
v ∈ V \{s, t} has either zero or two incident edges with
flow. To do this we need an auxiliary 0–1 variable ht

v

for each v. Now we can model our special kind of flow
conservation in each vertex v ∈ V \ {s, t}.∑

e incident to v

f t
e = 2ht

v (4)

Finally, for each edge e ∈ E we lower-bound the
“global” decision variable ye (that decides whether
e goes into the spanning subgraph G′) by the “local”
flow f t

e (that goes through e from s to t):

ye ≥ f t
e (5)

Given our objective function and Constraint (2), this
is equivalent to setting ye = max{f t

e | t ∈ V \ {s}}.
This completes our MIP formulation. It consists of
O(nm+ k) variables and constraints.

5 Conclusion

We have shown that attacking the problem of finding
a spanning tree with few crossings in a given topolog-
ical graph by approximation algorithms is probably
not a good idea, even though it could be an interesting
theoretical problem to find approximation algorithms
with approximation factor in o(k).
On the other hand we have presented a fixed-

parameter algorithm where we used the total num-
ber of crossings as fixed parameter. There might be
other quantities associated with a geometric graph
that could be used as fixed parameter. We are cur-
rently investigating this.
Finally we have given a MIP formulation, which we

plan to implement in order to evaluate several heuris-
tics.

References

[1] K. Jansen and G. J. Woeginger. The complexity of
detecting crossingfree configurations in the plane. BIT,
33:580–595, 1993.

[2] J. Kratochvil, A. Lubiw, and J. Nesetril. Noncross-
ing subgraphs in topological layouts. SIAM J. Disc.
Math., 4(2):223–244, 1991.

[3] D. Lichtenstein. Planar formulae and their uses. SIAM
J. Computing, 11:329–343, 1982.

198

