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Incremental Construction along Space-Filling Curves

Kevin Buchin∗

Abstract

For the incremental construction of a Delaunay tri-
angulation, we prove that inserting points in rounds
and walking along a space-filling curve in each round
yields an algorithm running in linear expected time
for uniformly distributed points. We complement this
result by a simpler incremental construction running
in linear expected time in any dimension.

1 Introduction

Motivation When devising an insertion order for the
incremental construction of the Delaunay triangula-
tion there are two seemingly conflicting goals: Insert-
ing points randomly from the data avoids creating ar-
tificial triangles during the construction. In contrast,
inserting points nearby allows taking advantage of ge-
ometric locality and locality of reference.
Randomized incremental construction follows the

first approach. It is asymptotically optimal but per-
forms poorly with modern memory hierarchies when
used for large data sets as observed by Amenta, Choi
and Rote [1]. They showed how randomness can be re-
duced without changing the asymptotic performance
by a biased randomized insertion order : Points are
randomly assigned to rounds of insertion of increas-
ing sizes, and within a round the order of insertion
can be chosen freely.
This allows us to use locality within the rounds by

traversing the points of a round in an order along a
space-filling curve [11]. We chose a space-filling curve
order because it combines locality of reference with
geometric locality by linearizing space, adapts well
to irregularities of the point distribution, is fast to
compute, is applicable in higher dimensions, and gives
a good bound on the length of the resulting tour.

Related Algorithms Some linear expected time al-
gorithms for constructing the Delaunay triangulation
of uniformly distributed points from a bounded con-
vex area in the plane are known [2, 6, 8]. Dwyer [6]
gives an algorithm running in linear expected time for
points from a sphere in any fixed dimension.
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Two incremental constructions running in linear
time in practice on uniformly distributed points are
known [9, 12]. In both cases, the analysis does
not treat the irregularities near the boundary. The
boundary case can be avoided by considering points
from a Poisson point process.

Inserting near the Boundary For algorithms based
on incremental construction, points near the bound-
ary seem difficult to handle, because long and thin tri-
angles slow down the point location. Figure 1 shows
a typical case of this: Near the boundary, triangles
with a large circumcircle are likely to occur in the tri-
angulation, because a large part of the circumcircle
may lie outside the region with points.

Figure 1: Delaunay triangulation of points in a square

Our main effort is to prove that the boundary case
does not change overall linearity. While the analysis
is done for our algorithm it seems possible to adapt
the analysis to treat the algorithms mentioned above.
Surprisingly, we found another simple incremental

construction which has no problems near the bound-
ary and constructs the Delaunay triangulation in lin-
ear expected time in any fixed dimension. We include
an analysis of this algorithm.

Contributions Our main contribution is to prove
that a biased randomized insertion order together
with a local insertion scheme runs in linear expected
time on uniform points in a bounded convex region.
This result complements the good practical perfor-
mance of biased randomized insertion orders and re-
solves an open problem posed by Amenta et al. [1]
This algorithm is the first completely analyzed linear
expected time incremental construction algorithm for
Delaunay triangulations.
The main technical contribution is the explicit anal-

ysis of point location near the boundary. Further-
more, we present an incremental construction running
in linear expected time in any fixed dimension.
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Figure 2: Assigning points to rounds

2 Walking along a Space-Filling Curve

Incremental Construction The basic concept of in-
cremental construction is simple to state: Insert the
points into the Delaunay triangulation one by one,
updating the data structure after each insertion step.
The time needed to insert a point consists of the time
needed for locating the point in the current triangu-
lation and the time for updating the triangulation. If
the points are inserted in random order the expected
total time needed for updating is in O(n) and for point
location is in O(n log n).

Biased Randomized Insertion Orders The order of
insertion is allowed to deviate from a random order as
long as randomness dominates. Sufficient randomness
can be introduced to the insertion order by assigning
the points independently at random to rounds as illus-
trated in Figure 2: A point is independently assigned
to the last round with the probability of 1/2. Each
of the remaining points is assigned to the next to last
round with the probability of 1/2, and so on [1].
After a logarithmic number of rounds an expected

constant number of points remain, and we can stop
sampling and assign the remaining points to the first
round. The points are inserted round by round. In a
round points can be inserted in an arbitrary order.
Biased randomized insertion orders were originally

introduced to reduce random memory access. We
make use of the fact that they do not change the up-
date cost, which, in our case, is linear. Therefore we
can focus on the point location time.

Space-Filling Curves Within a round we construct
a short tour through the points by the space-filling
curve heuristic for the traveling salesman [10]. To see
how the tour is constructed, consider the first steps of
the geometric construction of the Hilbert Curve shown
in Figure 3. The space is successively subdivided. The
cells are ordered in such a way that consecutive cells
in the order are adjacent.
The limit of this process yields a space-filling curve,

i. e. a surjective mapping from the unit interval to the
unit square or, more generally, to the d–dimensional
unit cube. Formally, the space-filling curve heuristic
sorts the points by selecting a preimage for every point
and by sorting the points according to the preimages.

Figure 3: First steps in the construction of the Hilbert
curve and a space-filling curve tour

In practice, the process can be stopped after a fi-
nite number of subdivisions. The maximal number of
subdivisions necessary is the number of bits of pre-
cision. In order to achieve an O(

√
n) bound on the

tour length a subdivision with as many cells as points
is sufficient. Points within a cell can then be ordered
in an arbitrary order.

Walking We traverse the tour and insert the points
along the way. The next point is located by walk-
ing [5], i. e. by a local search starting at the current
point and traversing the triangles stabbed by the line
segment between the two points. This point location
scheme does not need a point location data structure.
The heuristic can be used not only for points in the

unit square but also in an arbitrary rectangle. The
bound on the tour length changes by a factor of the
length of the longer side. For points in a bounded
convex region a bounding rectangle is used.

3 Analysis

Space-Filling Curve Heuristic The heuristic con-
structs a tour through a given set of points in the unit
square by visiting them in the order of their preimages
under a space-filling curve ψ. The order of preimages
is not unique since ψ cannot be injective [11]. For the
heuristic to be effective the images of nearby points on
the side of the preimages should be near to each other
in space. For space-filling curves this follows from
their Lipschitz continuity of order 1/2, i. e. that for
any s, t in the unit interval |ψ(s)−ψ(t)| ≤ cψ|s−t|1/2.
The space-filling curve heuristic was popularized

by Platzman and Bartholdi [10]. A general treat-
ment and probabilistic analysis is given by Gao and
Steele [7]. We summarize the result we need in the
following lemma:

Lemma 1 For a space-filling curve that is Lipschitz
of order 1/2 and can be generated by subdivision, an
order on the points can be computed in linear time in
such a way that for any k-subset of points the length
of the tour through these points along the order is
bounded by O(k1/2).

For this lemma no assumption on the point distri-
bution is used. A stronger bound holds for points
distributed uniformly in the unit square [7]. In d di-
mensions the bound generalizes to O(n(d−1)/d).
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Counting Intersections To analyze the running time
it is sufficient to analyze the time required in the last
round using an induction. Assume m+ n points dis-
tributed independently and uniformly at random in a
bounded convex region C of area 1, where n points are
already inserted in the Delaunay triangulation. To in-
sert them remaining points, a tour through the points
is constructed using the space-filling curve heuristic.
The points are located by traversing the triangula-

tion along the tour. Therefore, the time needed for
locating the points is proportional to the number of
intersections between the tour and the triangulation.
A bound on the expected number of intersections is

obtained by considering exclusion regions for possible
edges of the triangulations, i. e. if the region contains
points on both sides of the possible edges the edge
cannot be in the triangulation. For Delaunay trian-
gulations the disc with the edge as diameter is an ex-
clusion region. For uniformly distributed points the
edges of a triangulation with exclusion regions typi-
cally are expected to be either short or near to the
boundary. This can be strengthened to the following:

Lemma 2 (Devroye, Mücke and Zhu [5]) The
expected number of intersections between a Delaunay
triangulation of points distributed independently and
uniformly in a compact convex area C and a fixed
line segment L that is at least distance c0

√
log n/n

from the boundary of C is bounded by

c1 + c2|L|
√
n,

where c0 is a constant, and c1 and c2 depend only on
the geometrical properties of C.

The bound on the tour length and the bound on the
number of intersections together give a linear bound
for all line segments that have a distance of at least
c0
√
log n/n from the boundary ∂C. The expected

number of points near the boundary is bounded by
m′ := c0|∂C|m

√
log n/n and the number of line seg-

ments by 2m′, and therefore, by Jensen’s inequality
and Lemma 1, the total length of these line segments
by c
√
2m′ for suitable c.

To treat these segments we quantify what it means
that the edges of the triangulation are likely to be
short or near to the boundary:

Lemma 3 Let T be the Delaunay triangulation of
n points distributed independently and uniformly in
a convex area C. Denote by Dw,l the event that a
Delaunay edge with an endpoint with a distance of at
least w to the boundary of C is longer than l.
For c > 1 and l ≥ cw

Pr (Dw,l) ≤ n2e−(n−2)wl
√

1−1/c2/2.

In particular, if l ≥ 3w and wl ≥ 6
√
2 log n/n, then

Pr (Dw,l) ∈ o(1/n).

w

l’

boundary of C

Figure 4: Exclusion re-
gion for a Delaunay edge
that is contained in C

w

L l

boundary of C

Figure 5: Area for end-
points of Delaunay edges
intersecting L

Proof. Consider the edge in Figure 4 with length
l′ ≥ l and a vertex with a distance of more than
w to the boundary of C. The two rectangular tri-
angles form an exclusion region for the edge that is
contained in C. The area of a triangle is bounded
by 1/2 · w

√
l2 − w2 ≥ wl

√
1− 1/c2/2. There are

(
n
2

)
possible edges and therefore

Pr (Dw,l) ≤
(
n

2

)
2(1− wl

√
1− 1/c2)n−2

≤ n2e−(n−2)wl
√

1−1/c2/2

�

This gives us a bound on the number of Delaunay
edges that can intersect the line segments of the tour:

Lemma 4 The expected number of intersections of a
Delaunay triangulation and a tour along a Lipschitz-
1/2 space-filling curve with a total number ofN points
which are distributed independently and uniformly in
a convex area is linear in N .

Proof. Assume l ≥ 3w and wl ≥ 6
√
2 log n/n. With

high probability only edges with endpoints with dis-
tance of at most l to one of the line segments, or with
distance at most w from the boundary can intersect.
For a single line segment this area is shown in Fig-
ure 5. The expected number of endpoints of edges
that intersect a line segment L is therefore bounded
by n(|∂C|w+πl2+2l|L|)+o(1). Because of planarity
there are at most three times that many edges inter-
secting L.
For k line segments of total length λ this yields

a 3n(|∂C|kw + πl2k + 2lλ) + o(k) bound on the
number of intersecting edges. In our case, we have
k = c0|∂C|m

√
log n/n and λ =

√
k. Choosing

w := max (k−1/4
√
log n/n, (log n/n)2/3) and l :=

6
√
2 log n/(nw) the number of intersections can be

bounded by O(n1/8m3/4 log7/8 n + n−1/6m log7/6 n).
Adding up the bound for segments near the bound-
ary and far away from the boundary yields a linear
bound on the expected number of intersections. �
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Inserting Points We now extend the analysis to the
case where the triangulation changes during a tour
because points are inserted. The points of the trian-
gulation occur in two different roles in the analysis:
They may contribute to the number of intersections
as an endpoint of an intersecting edge but they may
also block other edges because they lie in their exclu-
sion region. The analysis can be extended by taking
all points as possible endpoints but only the points of
the original triangulation as blocking points.
For a fixed line segment of the tour the remaining

points of the tour are not independent of this seg-
ment but their density can be bounded if we use a
bi-measure preserving curve, which allows us to work
on uniform distributions on the preimage and the im-
age exchangeably [7]. The cost resulting from the fact
that the starting point of a line segment is a vertex of
the triangulation can be bounded by the update cost.
In total this yields the following theorem:

Theorem 5 Using a biased randomized insertion or-
der and, in each round, walking along a Lipschitz-
1/2, bi-measure preserving space-filling curve, the in-
cremental construction algorithm runs in linear ex-
pected time for points distributed independently and
uniformly in a bounded, convex area.

4 Seeking a Conflict with the Neighbor

The main problem in the average case analysis of in-
cremental constructions seems to be the boundary.
Here we give an algorithm for which this is not so.
The points are inserted in random order. The algo-

rithm maintains a dynamic bucketing scheme. This
allows us to find the nearest neighbor in the trian-
gulation for a new point in constant expected time
using spiral search [2]. Now a d–simplex incident to
the nearest neighbor is found which conflicts with this
point. From this triangle all conflicting d–simplices
are found as in the Bowyer-Watson algorithm.

Theorem 6 Seeking a Conflict with the Neighbor
constructs the Delaunay triangulation in linear ex-
pected time when the points are distributed inde-
pendently and uniformly in a d–dimensional bounded
convex open region for which the expected complexity
of the Delaunay triangulation is linear. In particular,
this is the case for the unit d–ball.

Proof. The expected time required for searching the
nearest neighbor and for updating the triangulation
is linear [2]. It remains to bound the expected num-
ber of d–simplices of the triangulation containing the
nearest neighbor of a new point. The difficulty is that
the nearest neighbor is not a random point of the tri-
angulation but a constant bound can be obtained by
using that the in-degree of the nearest neighbor graph
is bounded in any fixed dimension.

The special case of the d–ball follows directly from
the linear expected complexity [6]. �

5 Discussion

We presented two incremental construction algo-
rithms for the Delaunay triangulation. The first algo-
rithm constructs a spatial order of the points. Ideally,
the Delaunay triangulation should be stored in the
same order to make use of the locality of reference. A
possible way to achieve this is presented by Blandford
et al. [3]. For this, it is important to use one ordering
for all points.
Two advantages of the first algorithm which we

have not addressed in the analysis are its good perfor-
mance on surface points and on large data sets. Fur-
thermore, the algorithm runs in higher dimensions.
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