
EWCG 2005, Eindhoven, March 9–11, 2005

Maximum Line-Pair Stabbing Problem and its Variations∗

Sebastian Böcker Veli Mäkinen†

Abstract

We study the Maximum Line-Pair Stabbing Problem:
Given a planar point set S, find a pair of parallel lines
within distance ε from each others such that the num-
ber of points of S that intersect (stab) the area in be-
tween the two lines is maximized. There exists an al-
gorithm that computes maximum stabbing in O(|S|2)
time and space. We give a more space-efficient solu-
tion; the time complexity increases to O(|S|2 log |S|),
but the space reduces to O(|S|). Our algorithm also
extends to a dual problem where one searches for a
line stabbing maximum number of variable size cir-
cles; as far as we know, this problem has previously
been studied only on fixed size circles.
A variant of the stabbing problem equals a one-

dimensional point set matching problem under trans-
lations, scalings, and errors. We study a version of
this problem, where the matching has to be a one-
to-one mapping. Existing techniques based on incre-
mental maintenance of maximum matching using aug-
menting paths yield O((mn)3) time solution, wherem
and n are the sizes of the point sets to be matched.
Our new algorithm achieves O((mn)2(m + n)) time.
The improvement is based on an observation that in
our case the match-graph has a regular shape, and the
maximum matching can be updated more efficiently.

1 Introduction

There are three dual ways to describe the Maximum
Line-Pair Stabbing Problem (see Fig. 1):

• Given a set of points, find a pair of parallel lines
within distance ε from each others such that the
number of points in between the lines (including
them) is maximum. For short, the resulting line-
pair is said to stab maximum number of points.

• Given a set of circles with diameter ε, find a line
that goes through maximum number of them.

• Given a set of lines, find a vertical line segment
starting at point (x, y) of length δ(x) that crosses
maximum number of lines. (Function δ will be
defined later.)

∗Technische Fakultät, Universität Bielefeld, Germany,
{boecker,veli}@cebitec.uni-bielefeld.de. Supported by
the ‘‘Deutsche Forschungsgemeinschaft’’ (BO 1910/1-3)
within the Computer Science Action Program.

†Also partially supported by the Academy of Finland.

Figure 1: Stabbing points with a line-pair (left) and
stabbing circles with a line (right).

Our motivation to study the problem comes from
the calibration of Mass Spectrometry data [4]. There
we basically have two sets of real values, one corre-
sponding to the theoretical reference spectrum, and
one for measured spectrum. We know that there is a
linear function mapping the measured values close to
the reference values. One way to find such transfor-
mation is to map each pair (reference value, measured
value) into a plane, and find a line-pair stabbing max-
imum number of points.
The maximum stabbing problem has been studied

earlier by Chin, Wang, and Wang [6]. They gave a
quadratic time and space algorithm that is based on
the third dual interpretation given above.
We use the same dual mapping in our algorithm as

[6], but in a different way. The consequence is that
we are able to manage with linear space, but the time
complexity increases by a logarithm factor.
There is also an indirect way to solve the problem

using geometric range query data structures. This
solution is conceptually easiest to understand, but it
also uses nearly quadratic space.
Returning back to the motivation [4] on two sets of

real values, we note that the maximum stabbing prob-
lem is an over-generalization of that problem; instead
of restricting by ε the Euclidean distance between the
two lines, one can restrict the distance in the one-
dimensional projection. As such the problem is not
well-defined as it has a degenerate optimum solution.
We study a robust variant of this problem, where we
require that the linear function mapping one set to the
other maximizes the number of one-to-one matches.
This problem can be solved using existing techniques
for incremental bipartite matching. We give a new,
one order of magnitude faster, solution to the prob-
lem.

183

21st European Workshop on Computational Geometry, 2005

2 Maximum Stabbing using Half-Space Range
Counting Queries

Let S ⊂ R2 be a point set and ε > 0 a given param-
eter defining an instance of the maximum line-pair
stabbing problem throughout this paper. In the fol-
lowing, we derive an O(|S|2 log |S|) time solution to
the problem using data structures for half-space range
searching [1].
Let us denote by L the set of feasible line-pairs,

i.e. those pairs of parallel lines within distance ε from
each others. The solution is as follows:

(i) Build the data structure of Chazelle [5] as pointed
out in [1, Theorem 4.4, p. 24] for half-space range
counting queries on S. The data structure can
be constructed in O(|S|2) time and it occupies
O(|S|2/ log2 |S|) space. For any line, it gives the
number of points on either side of it in O(log |S|)
time.

(ii) Construct the set L ⊂ L of representative line-
pairs as follows. On each pair of points of S, pair
the line going through these points with the two
parallel lines at ε distance from it. Add these two
line-pairs to L. Also, on each pair (p, s) of points
of S having distance greater or equal to ε, add
the (two) line-pair(s) to L formed by the parallel
lines at ε distance from each others such that one
line goes through p and one through s.

(iii) Make two queries on the data structure on each
line-pair in L, to compute how many points of S
intersect the area in between the lines.

(iv) Choose the line-pair that obtains the maximum
count.

The correctness of the method follows using a shifting
argument to show that it is enough to consider the set
of representative line-pairs.
The algorithm makes O(|S|2) queries each tak-

ing O(log |S|) time, giving overall running time
O(|S|2 log |S|). The space usage is O(|S|2/ log2 |S|).

3 Direct Solution to Maximum Stabbing Problem

We solve the problem using the third dual inter-
pretation mentioned in the introduction. We map
each point p = (px, py) ∈ S into a line p∗ : y =
pxx − py. A line E : y = mx + b is mapped
into a point E∗ = (m,−b). Consider another line
κ : y = mx + (b + δ(m)) parallel to E, where δ(m)
is defined so that the distance of κ and E is ε. That
is, δ(m) = ε

√
12 +m2. This line is mapped into a

point κ∗ = (m,−b − δ(m)). One easily notices, that
the parallel lines in between κ and E, are mapped into
a line segment m× [−b− δ(m),−b]. Hence, our orig-
inal problem equals that of finding a line segment

m × [−b − δ(m),−b] such that the number of lines
it intersects is maximal, over all choices of m and −b.
We are ignoring vertical line-pairs for the moment.
Let us now derive the algorithm that finds the opti-

mum values for m and −b in time O(|S|2 log |S|) and
space O(|S|). Using again a shifting argument we no-
tice that (m,−b) can be chosen so that −b = pxm−py

for some (px, py) ∈ S. Still our space of choices for m
and −b is infinite. To make it finite, we notice that
fixing two lines partitions the range of m along one
line into constant number of relevant ranges.
To be more precise, let us denote by S∗ the set of

lines that are images of points in S. Consider two
lines p∗ : pxx − py and q∗ : qxx − qy of S∗, and the
case where (m,−b) is chosen so that −b = pxm− py.
Equation

pxm− py − δ(m) = qxm− qy (1)

has only constant number of solutions (if any), which
means that there are only constant number of ranges
R ⊆ R such that m ∈ R if and only if point
(m, qxm − qy) is included in the line segment m ×
[pxm− py − δ(m), pxm− py]. Furthermore, the solu-
tions to (1) can be found in constant time. Now, let
R(p∗) be the multiset of ranges of line p∗ formed by
repeating the above process for each q∗ ∈ S∗. After
sorting the endpoints (y-coordinates) of the ranges in
R(p∗) into ascending order, attaching to each end-
point value +1 or −1 depending on whether the end-
point is a start or end of a range, one can scan
through the endpoints keeping a counter how many
ranges are active at each phase. Endpoints with the
same coordinates are sorted so that those associated
with +1 precede those associated with −1. The end-
point associated with the largest count gives the op-
timal choice for (m,−b) restricted to values such that
−b = pxm − py. The same process can be repeated
constructing R(p∗), sorting it, and computing the
largest count, for each p∗ ∈ S. The optimum choice
for (m,−b) corresponds then to the overall largest
count.
We have now found the optimum line segment

m×[−b−δ(m),−b] for the dual problem and hence we
have found the line-pair stabbing the maximum num-
ber of points of S for the primal problem. The space
requirement is that needed for storing set of ranges
R(p∗) at each phase, i.e. O(|S∗|) = O(|S|). The time
requirement is that of sorting R(p∗) on each p∗ ∈ S∗,
i.e. O(|S| · |S| log |S|) = O(|S|2 log |S|). Finally, we
note that if the solution is a vertical line-pair, our
algorithm does not find it because the mapping to
the dual plane does not apply for such lines. How-
ever, in this case, a simple vertical sweep is enough to
compute the maximum stabbing over the linear num-
ber of relevant vertical line-pairs. This will only take
O(|S| log |S|) time, which is negligible.

184

EWCG 2005, Eindhoven, March 9–11, 2005

In the full version, we show how to handle variable
size circles in the second dual interpretation, giving:

Theorem 1 Given a set C of variable size circles on
the plane, one can find the line going through max-
imum number of them in time O(|C|2 log |C|) and
space O(|C|). The maximum line-pair stabbing prob-
lem is a special case, and can be solved within the
same time and space bounds.

4 One-Dimensional Point Set Matching under
Translations, Scalings, and Errors

As explained in the introduction, when restricting to ε
distances measured in the one-dimensional projection,
the stabbing problem has a simpler interpretation as
a point set matching problem: Given two sets of real
values, i.e. one-dimensional point sets, A,B ⊂ R, find
a linear function f : R→ R such that |Mf (A,B, ε)| is
maximum, where Mf is a matching of A and B such
that for each (a, b) ∈ Mf holds |f(a) − b| ≤ ε. We
call this variant of the stabbing problem the linear
one-dimensional point set matching problem.
To solve the problem, consider a set F of repre-

sentative linear functions constructed as follows: Let
B(ε) = {p − ε, p + ε | p ∈ B}. For each quadru-
ple (a′, a, b′, b) such that a′, a ∈ A with a′ < a
and b′, b ∈ B(ε) with b′ < b, add function f(x) =
b−b′

a−a′ (x − a′) + b′ to F . Each function in F defines
a translation and scaling that maps two points of A
into ε distance from some points of B. Conditions
a′ < a and b′ < b prevent reflections. Again us-
ing the shifting argument, one observes that this is
the sufficient set of transformations to be examined.
The size of this set is O((mn)2), where m = |A|
and n = |B|. To find the optimum transforma-
tion f , we construct all Mf for f ∈ F incremen-
tally, and choose the f that corresponds to the largest
Mf : For each representative translation b′−a′, where
a′ ∈ A and b′ ∈ B(ε), construct the set of scale ranges
R(a′, b′) = {[b−ε−b′

a−a′ ,
b+ε−b′

a−a′] | a ∈ A, b ∈ B}. Sort the
endpoints of ranges in R(a′, b′) into increasing order,
and scan through them incrementing and decrement-
ing a counter analogously as explained before. This
gives the optimum scale for the fixed translation. Re-
peating the process for all representative translations
gives the overall optimum transformation. Noticing
that the scale ranges corresponding to a fixed a ∈ A
can be obtained in sorted order by scanning through
sorted B, the algorithm can be implemented to run
in O((mn)2 logm) time by merging the m sorted lists
at each phase.

4.1 One-to-one Mapping Case

The solution Mf obtained with the above algorithm
does not necessarily define a proper mapping between

A and B; a point of A may be mapped into ε distance
from several points of B, and vice versa. In fact, on
most instances there is a degenerate optimum solution
mapping all points of A into ε-distance from one point
of B. In applications, such degenerated cases can be
avoided by restricting the search space. However, a
more rigorous way to define the problem is to search
for Mf that contains the largest one-to-one mapping.
A brute-force algorithm to solve the one-to-one

mapping case is as follows: At each phase of the previ-
ous algorithm that constructs sets Mf incrementally,
construct a bipartite graph Gf having edges between
a ∈ A and b ∈ B if and only if (a, b) ∈ Mf . Solve
the maximum matching problem on each Gf , and
choose f corresponding to the overall largest maxi-
mum matching.
Notice that the graphs Gf change only by one edge

at each incremental step. Alt et al. [3, p. 246] describe
a solution to a similar geometric problem exploiting
this fact: As the maximum matching can only change
by one at each phase, it is enough to check whether
the new graph has an augmenting path. If so, use it to
produce the new maximum matching. Otherwise the
maximum matching does not change. Checking for an
augmenting path takes |Mf | time. In the worst case
each Mf is of size O(mn), and the whole algorithm
takes O((mn)3) time.
The above technique yields the best known upper

bound for the problem studied in [3]. Many conse-
quent papers have studied different variations of the
problem to avoid the costly maximum matching com-
putation, like assuming disjoint error regions, trans-
formations minimizing the Hausdorff distance, etc.
For references, see survey [2].
Our problem, however, has an extra property that

allows a more efficient way to find the maximum
matchings. We will next show how to find the max-
imum matching in O(m + n) time using a greedy
method. To describe this solution, we first introduce
some helpful notions to characterize our problem.
We say that a binary matrix B(1 . . .m, 1 . . . n) con-

taining values 0 and 1 is a staircase matrix if the
following conditions hold:

(i) Each row of the matrix contains at most one run
of 1s, i.e. a maximal range of consecutive cells
each containing value 1.

(ii) Let i′ and i, i′ < i be two rows containing a
run of 1s. Let the run at row i′ cover indexes
ci′ , ci′ + 1, . . . , di′ and the run at row i cover in-
dexes ci, ci+1, . . . , di. Then ci′ ≤ ci and di′ ≤ di.

Notice that from (i) and (ii) follows identical condi-
tions on columns, i.e. B is a staircase matrix if and
only if BT is staircase matrix.
Let A = a1a2 · · · am and B = b1b2 · · · bn be the two

point sets to be matched. We assume that the point

185

21st European Workshop on Computational Geometry, 2005

sets are given sorted in ascending order. Let us con-
sider a fixed Mf such that f(x) = s(x − a′) + b′,
where s = b−b′

a−a′ ≥ 0. Consider a match matrix
M(1 . . .m, 1 . . . n) havingM(i, j) = 1 if (ai, bj) ∈Mf ,
otherwise M(i, j) = 0. It follows easily from defini-
tions (proof omitted):

Lemma 2 The match matrix M is a staircase ma-
trix.

On fixed translation and scale, our problem reduces
to finding a maximum size one-to-one matching R of
rows and columns of M such that for each (i, j) ∈ R
holds M(i, j) = 1. Let R∗ be one such maximum
matching. We next show that one can obtain in
O(m + n) time a matching R that is as good as any
R∗. To show this, we first prove (in Lemma 3) that
there is always an order-preserving matching R̂ that
is as good as R∗; matching R is order-preserving if, for
every pair (i′, j′), (i, j) ∈ R, we have i′ ≤ i if and only
if j′ ≤ j. Then Lemma 4 constructs the algorithm.

Lemma 3 There is a maximum matching R̂ that is
order-preserving.

Proof. We show that there is an algorithm to con-
vert any maximum matching R∗ into an equally good
order-preserving matching in finite number of steps:
Let Ř be the set of all pairs in R∗ that have at least
one conflict with a pair in R∗: (i′, j′) ∈ Ř if and
only if there is (i, j) ∈ R∗ such that pairs (i′, j′)
and (i, j) conflict the order-preserving condition. Let
(imin, j

′) ∈ Ř be the pair having the smallest index
imin, and (i, jmin) the conflicting pair for (imin, j

′)
having the smallest index jmin. Since M(imin, j

′) =
M(i, jmin) = 1, we infer M(imin, jmin) = M(i, j′) =
1 from the staircase property. Hence, we can ex-
change the pairs to remove the conflict, i.e. R∗ ←
(R∗\{(imin, j

′), (i, jmin)})∪{(imin, jmin), (i, j′)}. Af-
ter the exchange, R∗ is still a maximummatching, and
contains one more pair, namely (imin, jmin), that is
not conflicting with any other pair. Moreover, when
the process is repeated with the new R∗, the new set
Ř contains only pairs (i, j) such that i > imin, where
(imin, j

′) is the pair selected in the previous step. This
follows from the fact that R∗ is a one-to-one match-
ing. Thus, after at most |A| rounds, set Ř is empty,
and R∗ is order-preserving and has the same matching
score as the original one. �

Lemma 4 A maximum matching R can be obtained
greedily in O(m+ n) time.

Proof. Let R̂ be any a order-preserving maximum
matching. Such R̂ exists by Lemma 3. Let (i′, j′)
be the first pair in R̂, having the smallest index i′.
We can replace it by (i′, ci′) where cx denotes the
first column having M(x, cx) = 1 at row x. Let

(i, j) be the second pair in R̂. We can replace it
by (i,max(ci′ + 1, ci)). Such replacement is always
possible due to the staircase property. The same
replacement can be applied inductively, obtaining
a new order-preserving maximum matching, where
the matching column for each row in the originat-
ing matching R̂ is picked greedily. To complete the
argument, we note that one can pick the rows also
greedily due to the staircase property without chang-
ing the cardinality of the matching: We can traverse
row by row choosing the first available matching col-
umn, comparing three values: previous matched col-
umn, start of the run of 1s at the row, and end of
the run of 1s at the row. This takes overall O(m+n)
time, and we obtain a maximum matching R. �

Recall the incremental algorithm that updates the
graph Gf scanning scales from left to right for a fixed
translation. We can instead represent the graph Gf as
a match matrixM . As proven before,M is a staircase
matrix in each scale. Deleting or inserting an edge in
Gf corresponds to updating the value of a cell in M .
Each update extends or reduces a run of 1s at some
row, and hence we can maintain for each row pointers
to the start and end of the run in constant time. We
can repeat the greedy algorithm of Lemma 4 at each
scale. We conclude:

Theorem 5 The linear one-dimensional one-to-one
point set matching problem on two point sets A and
B of sizes m and n, respectively, can be solved in
O((mn)2(m+ n)) time.

Acknowledgment

We wish to thank the anonymous referee pointing out
the reference [6].

References

[1] P. K. Agarwal and J. Erickson. Geometric range
searching and its relatives. In Advances in Discrete
and Computational Geometry, Contemporary Math-
ematics 223, Am. Math. Soc. Press, 1999, pp. 1–56.

[2] H. Alt and L. Guibas. Discrete Geometric Shapes:
Matching, Interpolation, and Approximation, In
Handbook of Computational Geometry, Elsevier,
pp. 121–153, 1999.

[3] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Con-
gruence, Symmetry, and Similarity of Geometric Ob-
jects. Discr. & Comp. Geom., 3(1988):237–256.

[4] S. Böcker. Calibrating Time-of-Flight Mass Spectra.
Manuscript, October 2004.

[5] B. Chazelle. Cutting hyperplanes for divide-and-
conquer. Discr. & Comp. Geom., 9(1993), 145–158.

[6] F. Y. L. Chin, C. A. Wang, and F. L. Wang. Maxi-
mum Stabbing Line in 2D Plane. In Proc. COCOON,
Springer-Verlag LNCS 1627, pp. 379–388, 1999.

186

