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Uncertainty Envelopes ∗

Yaron Ostrovsky-Berman Leo Joskowicz

Abstract

We introduce a new class of problems: computing the
set of all the convex combinations of sites when their
position is uncertain and depends linearly on shared
parameters which vary according to a uniform dis-
tribution. The boundary of the set, called the un-
certainty envelope, is useful in optimizing processes
where there is uncertainty on the site positions and
the objective functions. We provide upper bounds on
the combinatorial complexity of the uncertainty en-
velope, and present the first efficient algorithm for its
computation in the general case.

1 Introduction

Suppose an investor wishes to spend his budget on im-
porting several products with fixed attributes (mar-
ket value, import tax, maintenance, transportation
costs, . . .). Choosing a combination of products which
maximizes his profit function is a standard optimiza-
tion problem. However, when the product attributes
are subject to change due to variation in market pa-
rameters (currency exchange rates, fuel and insurance
costs, . . . ), there is uncertainty involved in any invest-
ment. The problem then becomes that of finding the
best tradeoff between profit and risk.
This scenario is common to many fields involving

uncertainty or change with the following model prop-
erties:
• proportionality - the attributes of the products
are proportional to their portion of the budget.
• divisibility - the portion of the budget for each
product is allowed to assume any fractional value.
• linearity - the attributes depend linearly on the
market parameters.
• independency - the market parameters vary inde-
pendently.

For optimization problems, the following additional
properties hold:

• uniformity - the parameters vary according to a
uniform distribution with fixed intervals.
• multiple fuzzy objective functions - there are mul-
tiple choices of the objective function form, where
function coefficients have uncertainty that varies
in a range.
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We formalize the problem as follows. Let S =
{s1, s2, . . . , sn} be a set of sites (products, materi-
als, components), and let p = (p1, p2, . . . , pm)T be
the market parameters uncertainty vector, which is
limited to the domain ∆ = [−δ1, δ1]× [−δ2, δ2]× . . .×
[−δm, δm]. Each site si is associated with a nominal
(current) value bi ∈ Rd and anm×d sensitivity matrix
Ai describing the attribute sensitivity to variations in
p. The position of site si is given by vi(p) = Aip+ bi.
We define the uncertainty envelope as the boundary
of the union of the convex hulls of the sites when the
uncertainty vector spans its domain:

E = ∂{
n∑

i=1

λivi(p)|λi ≥ 0,
n∑

i=1

λi = 1, p ∈ ∆}

The uncertainty envelope provides a global view of
the problem domain which is most useful in analyzing
worst case variation of unknown or uncertain combi-
nation of the sites. Since there are possibly several ob-
jective functions for optimization, and each function
may have uncertainty, the envelope allows sensitivity
analysis on each of the solutions.
The class of problems we study depends on two

key parameters: the number of sites n and the di-
mension d. In the following special cases, the prob-
lem has known solutions. When there is no uncer-
tainty (∆ = {0}), the envelope bounds the convex
hull of {bi}ni=1, the domain of the standard optimiza-
tion problem. In one dimension (d = 1, any n), the
envelope is a segment whose endpoints are determined
by the maximum and minimum of {bi ± ai

jδj}, where
ai

j is the j
th entry of Ai. When there is only one site

(n = 1, any d), the envelope bounds the d-zonotope
defined by the sensitivity matrix A and the uncer-
tainty domain ∆. Zonotopes play a crucial role in an-
alyzing and computing uncertainty envelopes. When
the sensitivity matrices of the sites are independent,
that is the indices of their non-zero column vectors
are mutually exclusive, the uncertainty envelope is
the boundary of the convex hull of the uncertainty
zonotopes of the sites. In the general case (n, d ≥ 2),
the envelope is the boundary of the volume swept by
the zonotope as it spans the convex combinations of
all the sites. For a solution to the special case d = 2,
n = 2 see [4].
In this extended abstract, we provide upper bounds

on the combinatorial complexity of uncertainty en-
velopes and present the first algorithm for their com-
putation in the general case. The results are sum-
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dim\#sites 1 2 3 n > 3
1 comb O(1) O(1)

time O(m) O(nm)
2 comb Θ(m) O(λ6(m2)) O(n2λ6(n2m2))

time O(m logm) O(λ6(m2) log(m)) O(n2λ6(n2m2))
3 comb Θ(m2) O(m6+ε) O(m8+ε) O((n3m4)2+ε)

time Θ(m2) O(m6+ε) O(m8+ε) O((n3m4)2+ε)

d > 3 comb Θ(md−1) n ≤ d : O(ddmd+n−2)d−1+ε n > d : O(
(n

d

)
ddm2d−2)d−1+ε

time Θ(md−1) n ≤ d : O(ddmd+n−2)2d−4+ε n > d : O(
(n

d

)
ddm2d−2)2d−4+ε

Table 1: Combinatorial complexity of uncertainty envelopes and run time complexity of our algorithm. Except
for d > 3, the algorithm’s storage requirement is identical to the combinatorial complexity. The function λs(m)
is the upper bound on the complexity of a Davenport-Schnitzel sequence of order s on m symbols (nearly linear).

marized in Table 1. The algorithm identifies all the
topologies assumed by the zonotope as it sweeps along
the convex combinations of the sites, and then it
sweeps individual facets that participate in topolog-
ical changes. This is significantly better than the
straightforward approach of sweeping the convex hull
of the sites along trajectories determined by the faces
of the uncertainty domain hyperbox ∆, which has ex-
ponential complexity in the number of parameters m.
This abstract is organized as follows. Section 2 re-

views zonotope topology and computation. In Section
3, we describe an arrangement of surfaces which en-
codes the topology of the zonotope over all convex
combinations of the sites. In Section 4 we use the ar-
rangement to compute a small subset of the faces of
hyperbox ∆ which contribute to the uncertainty enve-
lope. The general algorithm is described in Section 5.
Section 6 described future work and open problems.
Throughout this abstract we assume that the input is
in general position, that is the the sensitivity matrix
columns of the sites are pairwise linearly independent.

2 Zonotope topology

We now describe uncertainty envelopes for one site
(n = 1). As the jth parameter spans the interval
[−δj , δj ], the site moves along a translate of the line
segment conv{−ajδj , ajδj}, where aj is the jth col-
umn of the sensitivity matrix A. Since the parame-
ters affect the site independently, the envelope is the
boundary of the Minkowsky sum of the m line seg-
ments, translated by the nominal value b. This is the
definition of a zonotope, a convex centrally symmetric
polytope [1]. We review relevant zonotope properties
below.
There is a geometric correspondence between zono-

topes in Rd and hyperplane arrangements in Rd−1.
The correspondence is realized by the following trans-
form: let Hj = {x|〈x, aj〉 = 0}, the hyperplane nor-
mal to aj and passing through the origin, and let
H0 = {x|xd = 1}. Transform each column vector
aj = (aj1, aj2, . . . , ajd)⊥ to the (d − 2)-dimensional
hyperplane hj = Hj ∩H0 whose equation is:

aj1x1 + aj2x2 + . . .+ aj(d−1)xd−1 + ajd = 0 (1)
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Figure 1: The 3D zonotope (right) and its topology
arrangement (left) corresponding to the sensitivity
matrix A =

(
1 −2 1 −1
0 2 1 3

−1 −1 2 5

)
. The jth line equa-

tion is determined by substituting aj into Eqn. 1. The
marked neighboring 2-cells correspond to the neigh-
boring zonotope vertices.

Eqn. 1 transforms the generators of the zonotope,
aj ∈ Rd, to a hyperplane arrangement in Rd−1 which
has the same topology as the zonotope in the following
sense. The sign vector σ = (σ1, . . . , σm) ∈ {−1, 0, 1}m
of an arrangement cell containing a point x is deter-
mined according to the signs of 〈x, aj〉 for 1 ≤ j ≤ m.
Each k-cell of the arrangement corresponds to two
symmetric (antipodal) (d − k − 1)-cells of the zono-
tope. Specifically, the (d − 1)-cells of the arrange-
ment with sign vector σ correspond to the vertices
v+ = b +

∑m
j=1 ajδjσj and v− = b −

∑m
j=1 ajδjσj ,

which achieve the maximum of 〈x, v〉 over x (equiva-
lent to a direction) in the cell and v in the zonotope.
The sign vectors of neighboring (d − 1)-cells differ in
one entry only, and they correspond to neighboring
vertices on the zonotope. Thus it is possible to com-
pute the vertex representation of the zonotope in op-
timal Θ(md−1) time. Figure 1 shows an example in
3D.

3 Swept zonotope topology

We now describe the topology of the zonotope as it is
swept between the n sites. For clarity of explanation,
we focus on the case n = d. In Section 5 we show how
to solve for the general case.
When n = d, the uncertainty envelope bounds the
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Figure 2: Dynamic topology arrangement of A1 =(
0.7 0.1 −0.4 −1
0.5 −0.7 0.1 −2

)
, A2 =

(
0 0.7 0.8 1

−0.6 1 −0.7 2

)
.

Each of the curves is obtained by substituting the cor-
responding matrix columns into Eqn. 2. The curves
corresponding to columns 3 and 4 demonstrate degen-
eracies which occur when a subset of the coefficients
of x in Eqn. 2 are zero for some value of λ ∈ Λ.

union of (d− 1)-simplices which are the convex hulls
of sites whose positions vary within their respective
zonotopes. Consider a convex combination of the
sites defined by the coefficients λ = (λ1, λ2, . . . , λn).
The domain of the coefficients is Λ = [0, 1]n ∩ {(λ ∈
Rn|

∑n
i=1 λi = 1}. The position of a combina-

tion of sites is given by w(p, λ) =
∑n

i=1 λivi(p) =∑n
i=1(λiAip+λibi). Let the combined sensitivity ma-

trix be Ã(λ) =
∑n

i=1 λiAi. Then the topology of the
combined sites zonotope, defined by Ã(λ) and denoted
Z(λ), changes as λ varies. Replacing aji in Eqn. 1
with the entries of Ã(λ), we obtain:

n∑
i=1

λia
i
j1x1 + . . .

n∑
i=1

λia
i
j(d−1)xd−1 +

n∑
i=1

λia
i
jd = 0 (2)

where ai
jk denotes the k

th entry in the jth column
of matrix Ai. Since λn = 1 −

∑n−1
i=1 λi, this is

an algebraic surface of degree two in the variables
(x1, x2, . . . , xd−1, λ1, λ2, . . . , λn−1). We denote the di-
mension of the embedding space by D = 2(d− 1).
The arrangement of the m surfaces is called the

dynamic topology arrangement (DTA), because it en-
codes the topology of the zonotope of the combined
site as its center moves along conv{bi}. Every D-cell
of the DTA represents values of x for which the sign
vector is the same, defining two antipodal vertices of
the zonotope Z(λ) for λ within the cell. The inter-
section of two D-cells corresponds to two antipodal
edges of the zonotope. With the general position as-
sumption, an intersection of k D-cells which is also
the intersection of exactly k − 1 surfaces corresponds
to two antipodal (k − 1)-cells of the zonotope. The
complexity of the entire DTA is Θ(mD). Figure 2
shows a two dimensional DTA.

sweep boundary

Z(0.67) Z(1)

Figure 3: Sweeping the line segment correspond-
ing to the edge e in Figure 2 through the subspace
PC = (−δ1, δ2, 0, δ4) + conv{−e3, e3}. Note that only
a subset of Λ needs to be swept (from 0.67 to 1).
The solid polygons are the zonotopes at λ = 0.67 and
λ = 1. The segment is shown at 20 intermediate val-
ues of p3. The closed curve bounds the swept area.

4 The sweep subspace

The uncertainty envelope is the boundary of the union
of all the instances of the simplex determined by
p ∈ ∆. Although it is sufficient to include only in-
stances with p ∈ ∂∆, the boundary has an exponen-
tial number of cells m.
We now show how the DTA reduces this number

to a polynomial in m. When λ traces a path in its
domain Λ, the zonotope undergoes a general sweep in
Euclidean space. Weld and Leu [5] show that the vol-
ume swept by a compact d-manifold in Rd undergoing
a general sweep is equal to the union of the volumes
swept by its boundary and one location of the com-
pact d-manifold in the sweep. The boundary facets of
the zonotope generally correspond to the intersection
of d D-cells of the DTA, i.e. (d − 1)-cells of the ar-
rangement. Points incident on the facet differ only in
the value of d − 1 out of m parameters in the uncer-
tainty vector p. The indices of these parameters are
exactly those with zero sign in the (d− 1)-cell of the
DTA corresponding to the facet.
Let F be a facet of the zonotope and let C be the

DTA cell it corresponds to. Let σC = (σ1, . . . , σm)
be the sign vector of C, and let IC be the set of
indices with zero sign in σC . We define the sweep
subspace of the cell as PC = (σ1δ1, . . . σmδm) +∑

i∈IC
conv{−eiδi, eiδi}, where {ei} are the standard

basis vectors, and the plus and summation signs are
Minkowski additions of sets. Since a point in F is
attained by some value of λ ∈ Λ and p ∈ PC , the
sweeping of the facet through all values of Λ is equiv-
alent to sweeping the simplex through all the values
of PC . Therefore, to obtain the uncertainty envelope,
it suffices to sweep the simplex through the values of
PC defined by all the (d−1)-cells of the DTA. For the
computation and approximation of swept volumes see
e.g. [3, 5]. Figure 3 shows an example in 2D.
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1. Construct the dynamic topology arrangement A.
2. Compute sign vector of an arbitrary (d − 1)-cell Cinit ∈ A.
3. Traverse the (d − 1)-cells of A in BFS order, starting from Cinit:

a. Update the sign vector of current cell C: σC = (σ1, . . . , σm).
b. Find indices IC of zero signs in σC , defining sweep subspace PC .
c. Initialize swept volume V with simplex corresponding to arbitrary vertex p ∈ PC .
d. For each i ∈ IC :

- Sweep V from current p = (p1, . . . , pi, . . . , pm) to p−i = (p1, . . . ,−pi, . . . , pm).
- Set V to new swept volume, set p = p−i.

e. Insert the boundary of V into arrangement of surfaces H.
4. Compute uncertainty envelope as inner boundary of the outer d-cell of H.

Table 2: Algorithm for computing uncertainty envelopes

Figure 4: The arrangement H of swept boundaries of
the input of Figure 2 with b1 = (0, 0), b2 = (1, 0), δ1 =
δ2 = 0.1. The uncertainty envelope is the thick closed
curve bounding H. Notice that many of the curves do
not contribute to the outer cell of the arrangement.

5 Algorithm

Table 2 presents the algorithm for computing the un-
certainty envelope, based on the properties described
in the previous sections. The algorithm starts by com-
puting the DTA defined by Eqn. 2. It then traverses
the DTA, iterating on the (d− 1)-cells. For each cell
C, it computes its sign vector, which defines the sweep
subspace PC . It then computes the volume swept by
the simplex when p spans PC . The collection of sur-
faces which bound the swept volumes of all the sim-
plices form an arrangementH, whose outer cell defines
the uncertainty envelope.
The complexity of the algorithm, shown in Table

1, depends predominantly on the combinatorial and
computational complexity of arrangements and their
substructures. For d > 3, the current best algorithm
for arrangement traversal and single cell computation
is not optimal. For the most recent survey of arrange-
ments, see [2].
Planar envelopes: The curves bounding the swept

areas of line segments consist of line segments and
sections of parabolas (Figure 3). Figure 4 shows an
example.
3D envelopes: The swept volume of a line segment

in space is a hyperbolic paraboloid. The envelope of a
swept plane in space is a ruled and developable surface
[5]. Thus, the sweep boundary of a triangle consists
of both types of surfaces, which are swept again in the
second iteration of step 3d to produce surfaces of H.

Cases of n %= d: When n < d the DTA has di-
mension d+ n− 2, and the algorithm sweeps (n− 1)-
simplices. For n > d, the uncertainty envelope is the
boundary of the volume swept by the convex hull of
the n sites when p spans ∆. Since the facets of the
convex hull change during the sweep, we must con-
sider all

(
n
d

)
possible facets, and apply steps 1 − 3 of

the algorithm for each facet before applying step 4.

6 Conclusion

While the number of swept volumes depends on the
complexity of the DTA, not all the N sweep bound-
aries inserted in step 3e contribute to the outer cell.
Constructing an example in which O(N) surfaces par-
ticipate in the envelope, or proving a better bound, is
an open problem. Furthermore, the properties of the
outer cell of H suggest that the worst case bound on
its complexity may be lower.
For efficiency of computation, the swept volumes

in 3D can be approximated by polyhedrons [3]. Fi-
nally, the use of spatial data structures may reduce
the number of facets considered when n > d.
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