
EWCG 2005, Eindhoven, March 9–11, 2005

Lower Bounds for Kinetic Sorting

Mohammad Ali Abam∗ Mark de Berg†

Abstract

Let S be a set of n points moving on the real line. The
kinetic sorting problem is to maintain a data structure
on the set S that makes it possible to quickly generate
a sorted list of the points in S, at any given time.
We prove tight lower bounds for this problem, which
show the following: with a subquadratic maintenance
cost one cannot obtain any significant speed-up on the
time needed to generate the sorted list (compared to
the trivial O(n log n) time), even for linear motions.

1 Introduction

Background. In many areas of computer science one
has to store, analyze and manipulate geometric data.
More and more often this involves objects in mo-
tion. Hence, the study of geometric data structures
for moving objects has recently attracted a lot of at-
tention in computational geometry, especially since
Basch et al. [6] introduced the kinetic-data-structure
(KDS, for short) framework [3, 4, 6, 8, 9].
A KDS is a structure that maintains a certain at-

tribute of a set of continuously moving objects—the
convex hull of moving objects, for instance, or the
closest distance among moving objects. It consists of
two parts: a combinatorial description of the attribute
and a set of certificates with the property that as long
as the outcomes of the certificates do not change, the
attribute does not change. It is assumed that each ob-
ject follows a known trajectory so that one can com-
pute the failure time of each certificate. Whenever
a certificate fails—we call this an event—the KDS
must be updated. The KDS remains valid until the
next event. See the excellent survey by Guibas [8] for
more background on KDSs and their analysis.
Computing the convex hull of a set of points in

the plane is a classic problem in computational ge-
ometry. It is therefore not surprising that the kinetic
maintenance of the convex hull of a set of n moving
points in the plane was already studied by Basch et
al. [6]. They designed a KDS that needs to be up-
dated O(n2+ε) times and each time takes O(log2 n)
time.

∗Department of Computing Science, TU Eindhoven,
m.a.abam@tue.nl

†Department of Computing Science, TU Eindhoven,
mdberg@win.tue.nl

In some applications it may be necessary to main-
tain the attribute of interest explicitly. If one uses a
KDS for collision detection, for instance, any external
event—a collision in this case— must be reported. In
such cases, the number of changes to the attribute is a
lower bound on the number of events to be processed.
Since the convex hull of n linearly moving points can
change Ω(n2) times [5], this means that any KDS that
maintains an explicit representatie of the convex hull
must process Ω(n2) events in the worst case. Hence,
the convex-hull KDS of Basch et al. [6], which indeed
maintains the convex hull explicitly, is close to opti-
mal in the worst case.
In other applications, however, explicitly maintain-

ing the attribute at all times may not be necessary;
the attribute is only needed at certain times. This is
for instance the case when a KDS is used as an auxil-
iary structure in another KDS. The auxiliary KDS is
then used to update the main KDS efficiently when a
certificate of the main KDS fails. In this case, even
though the main KDS may have to be maintained
explicitly, the attribute maintained by the auxiliary
KDS only needs to be available at certain times. This
leads us to view a KDS as a query structure: we want
to maintain a set S of moving objects in such a way
that we can reconstruct the attribute of interest ef-
ficiently whenever this is called for. This makes it
possible to reduce the maintenance cost, as it is no
longer necessary to update the KDS whenever the at-
tribute changes. On the other hand, a reduction in
maintenance cost will have an impact on the query
time, that is, the time needed to reconstruct the at-
tribute. Thus there is a trade-off between mainte-
nance cost and query time. Our main goal is to study
such trade-offs for kinetic convex hulls.

Our results. As stated above, our main interest lies
in trade-offs between the maintenance cost of a kinetic
convex-hull structure and the time to reconstruct the
convex hull at any given time. In this short abstract,
however, we restrict our attention to the simpler ki-
netic sorting problem: maintain a KDS on a set of n
points moving on the real line such that at any time
we can quickly reconstruct a sorted list of the points.
We prove in Section 2 that already for the kinetic
sorting problem one cannot get good trade-offs: even
for linear motions, the worst-case maintenance cost is
Ω(n2) if one wants to be able to do the reconstruction
in o(n) time. Note that with Ω(n2) maintenance cost,

171



21st European Workshop on Computational Geometry, 2005

we can explicitly maintain the sorted list at all times,
so that the reconstruction cost is zero. Thus interest-
ing trade-offs are only possible in a very limited range
of the spectrum, namely for reconstruction costs be-
tween Ω(n) and O(n log n). For this range we also
prove lower bounds: we show that one needs Ω(n2/m)
maintenance cost if one wants to achieve o(n logm) re-
construction cost, for any m with 2 ≤ m ≤ n. (See
Section 2.1 for a definition of our lower-bound model.)
We also give a matching upper bound.

Related work. Some existing KDSs—the kinetic
variants of various range-searching data structures [2,
3, 4, 9], for instance—do not maintain a uniquely de-
fined attribute such as the convex hull, but they main-
tain a query data structure. In this setting the KDS
is, of course, a query structure as well. Our setting
is different because we are studying the maintenance
of a single, uniquely defined, attribute such as the
convex hull.
One of the main results of our paper is a lower

bound on the trade-offs between reconstruction time
and maintenance cost for the kinetic sorting problem.
Lower bounds for trade-offs between query time and
maintenance cost were also given by De Berg [7], but
he studied the kinetic dictionary problem, where one
wants to maintain a dictionary on a set S of n points
moving on the real line. He showed that any kinetic
dictionary with worst-case query time O(Q) must
have a worst-case total maintenance cost of Ω(n2/Q2),
even if the points move linearly.

2 The kinetic sorting problem

Let S = {x1, · · · , xn} be a set of n point objects1 mov-
ing continuously on the real line. In other words, the
value of xi is a continuous function of time, which we
denote by xi(t). We define S(t) = {x1(t), · · · , xn(t)}.
For simplicity, we write S and xi instead of S(t) and
xi(t), respectively, provided that no confusion arises.
The kinetic sorting problem asks to maintain a struc-
ture on S such that at any given time t we can quickly
generate a sorted list for S(t). We call such a struc-
ture a sorting KDS.
We focus on trade-offs between the sorting cost and

the maintenance cost: what is the worst-case mainte-
nance cost if we want to guarantee a sorting cost of
O(Q), where Q is some parameter, under the assump-
tion that the point objects follow trajectories that can
be described by bounded-degree polynomials.

2.1 The lower-bound model

We shall prove our lower bounds for the kinetic sorting
problem in the comparison-graph model introduced

1We use the term ”point objects” for the points in S to dis-
tinguish them from other points that play a role in our proofs.

by De Berg [7], which is defined as follows. A com-
parison graph for a set S of numbers is defined as a
directed graph G(S,A) such that if (xi, xj) ∈ A, then
xi < xj . The reverse is not true: the fact that xi < xj

does not mean there must be an arc in G. The idea
is that the comparison graph represents the ordering
information encoded in a sorting KDS on the set S: if
(xi, xj) ∈ A, then the fact that xi < xj can be derived
from the information stored in the KDS, without do-
ing any additional comparisons.

Maintenance cost. The operations we allow on the
comparison graph are insertions and deletions of arcs.
For the maintenance cost, we only charge the algo-
rithm for insertions of arcs; deletions are free. Follow-
ing De Berg [7], we therefore define the maintenance
cost as the total number of such arcs ever inserted
into the comparison graph, either at initialization or
during maintenance operations.
We say that the arc (xi, xj) ∈ A fails at time t if

xi(t) = xj(t).The arcs in the comparison graph es-
sentially act as certificates, and their failures trigger
events at which the KDS needs to be updated.

Query cost. A query at time t asks to construct a
sorted list on the points in the current set S (that is,
S(t)). We shall consider two different measures for
the query cost.
The comparison-graph sorting model. The first

measure is in a very weak model, where we only charge
for the minimum number of comparisons needed to
obtain a sorted list, assuming we have an oracle at our
disposal telling us exactly which comparisons to do.
This is similar to the query cost used by De Berg when
he proved lower bounds for the kinetic dictionary. For
the sorting problem this simply means that the query
cost is equal to the number of pairs xi, xj ∈ S that
are adjacent in the ordering and for which there is no
arc in the comparison graph.
The algebraic decision-tree model. In this model we

also count the number of comparisons needed to sort
the set S, but this time we not have an oracle telling us
which comparisons to do. We shall use the following
basic fact: Suppose the number of different orderings
of S that are compatible with the comparison graph
at some given time is N . Then the cost to sort S in
the algebraic decision-tree model is at least logN .

2.2 A lower bound in the comparison-graph sort-
ing model

The point objects in our lower-bound instance will
move with constant (but different) velocities on the
real line. Hence, if we view the line on which the point
objects move as the x-axis and time as the t-axis, then
the trajectories of the point objects are straight lines
in the tx-plane. We use ξi to denote the line in the

172



EWCG 2005, Eindhoven, March 9–11, 2005

tx-plane that is the trajectory of xi. It is somewhat
easier to describe the lower-bound instance in the dual
plane. We shall call the two axes in the dual plane
the u-axis and the v-axis. We use the standard duality
transform, where a line ξ : x = at+ b in the tx-plane
is mapped to the point ξ∗ : (a,−b) in the dual plane,
and a point p : (a, b) in the primal plane is mapped
to the line p∗ : v = au− b in the dual plane.
Now let p1, . . . , pn be the vertices of a regular n-

gon in the dual plane that is oriented such that the
diagonal pl−1pl+1 connecting the two neighbors of
the leftmost vertex pl is almost parallel to the v-axis
and has negative slope. The trajectories ξ1, · · · , ξn in
our lower-bound instance are the primals of the ver-
tices pi, that is, ξ∗i = pi. In the remainder of this
section we will prove a lower bound on the mainte-
nance cost of any comparison graph for this instance
whose sorting cost (in the comparison-graph sorting
model) is bounded by Q, where Q is a parameter with
0 ≤ Q < n.
For any pair of vertices pi, pj , let Eij denote the

line passing through pi and pj . Since the pi are the
vertices of a regular n-gon, the lines Eij have only n
distinct slopes. Note that Eij corresponds to the in-
tersection of ξi and ξj in the tx-plane, with the slope
of Eij being equal to t-coordinate of the intersection.
This implies that the intersection points of the tra-
jectories in the tx-plane have only n distinct t-values.
Let t1, · · · , tn be the sorted sequence of these t-values.
The times t1, . . . , tn define n + 1 open time intervals
(−∞, t1), (t1, t2), · · · , (tn,+∞). Since no two trajec-
tories intersect inside any of these intervals, the order
of the point objects is the same throughout any in-
terval. We say that xi is directly below xj in such an
interval if xi(t) < xj(t) for times t in the interval and
there is no other point object xk in between them in
that interval. Furthermore, we call a vertex pi a lower
vertex if it lies on the lower part of the boundary of
the n-gon, and we call pi an upper vertex if it lies
on the upper part of the boundary of the n-gon; the
leftmost and rightmost vertices are neither upper nor
lower vertices.

Lemma 1 (i) If pi is a lower vertex or the leftmost
vertex, then the object xi is below any other object
xj in exactly one time interval. If n is odd, this also
holds for the rightmost vertex.
(ii) If pi is an upper vertex, then xi is directly below
any other point object xj in at least one interval. If
n is even, this also holds for the rightmost vertex.

We can now prove the lower bound. Suppose that
we have a comparison graph on the point objects
whose sorting cost is Q during each of the time in-
tervals defined above. This implies that during each
such time interval, there must be at least n − Q − 1
arcs (xi, xj) in the comparison graph such that xi is

directly below xj . In total, (n + 1)(n − Q − 1) arcs
are needed over all n + 1 time interval. Some arcs,
however, can be used in more than one interval. For
xi, let ki be the number of arcs of the form (xi, xj)
that are used. For any of the �n/2 objects xi for
which case (i) of Lemma 1 applies, all these arcs are
distinct. For the remaining �n/2� objects case (ii) ap-
plies and so at least ki − 2 arcs are distinct. Hence,
the total number of arcs inserted over time is at least
(n+ 1)(n−Q− 1)− 2�n/2� ≥ n(n−Q− 2). We get
the following theorem.

Theorem 2 There is an instance of n point objects
moving with constant velocities on the real line, such
that any comparison graph whose worst-case sorting
cost in the comparison-graph cost model is Q, must
have maintenance cost at least n(n−Q− 2), for any
parameter Q with 0 ≤ Q < n.

2.3 A lower bound in the algebraic decision-tree
model

In the previous section we gave a lower bound for
the maintenance cost for a given sorting cost Q in
comparison-graph sorting model. Obviously, this is
also a lower bound for the algebraic decision-tree
model. Hence, the results of the previous section im-
ply that for any sorting cost Q = o(n) in the alge-
braic decision-tree model, the worst-case maintenance
cost is Ω(n2). Since with O(n2) maintenance cost we
can process all swaps—assuming the trajectories are
bounded-degree algebraic, so that any pair swaps at
most O(1) times—this bound is tight: with O(n2)
maintenance cost we can achieve sorting cost zero.
What remains is to investigate the range where the
sorting cost is o(n logm), where 1 < m ≤ n.

Lemma 3 There is a constant c such that if the sort-
ing cost of a comparison graph is at most cn logm,
then there is a path in the comparison graph whose
length is at least n/m1/3.

Next we describe the lower bound construction.
As before, it will be convenient to describe the con-
struction in the dual plane. To this end, let Ga :=
{0, 1, · · · , a − 1}2 be the a × a grid. The trajectories
of the point objects in our lower-bound instance will
be straight lines in the tx-plane, such that the duals
of these lines are the grid points of G√n. (We assume
for simplicity that n is a square number.) Before we
proceed, we need the following lemma.

Lemma 4 Let p = (px, py) be a grid point of G√n

and px, py ≤ a, where a ≤ √n/2. Let Ep be the line
through the origin and p. The number of different
lines passing through at least one point of G√n and
being parallel to Ep is at most 4a

√
n.

173



21st European Workshop on Computational Geometry, 2005

Theorem 5 There is an instance of n point objects
moving with constant velocities on the real line such
that, for any m with 1 < m ≤ n, any compari-
son graph whose worst-case sorting cost in the al-
gebraic decision-tree model is Q = o(n logm), must
have maintenance cost Ω(n2/m).

Proof. Let a :=
√
n/(8m1/3). Consider the compar-

ison graph at some time s+ ε with s = px/py, where
px, py ≤ a and ε > 0 is sufficiently small. Suppose the
sorting cost at time s is o(n logm). Then the sorting
cost will be at most cn logm for any constant c, so
by Lemma 3 there must be a path in the comparison
graph of length at least n/m1/3. We claim (and will
prove below) that at least half of the arcs in this path
are between point objects xi, xj such that ξ∗i and ξ

∗
j lie

on a common line of slope s. The number of distinct
values for s is equal to the number of pairs (px, py)
where px and py are integer numbers between 0 and
a − 1 (including 0 and a − 1) and GCD(px, py) = 1.
Because of symmetry, we count the number of pairs
(px, py) with the property px ≤ py. For a nonnega-
tive integer i, let ϕ(i) be the number of nonnegative
integers that are less than i and relatively prime to
i. Then the number of pairs (px, py) with the de-
sired properties is

∑a−1
i=1 ϕ(i). It is known [10] that

this summation is Θ(a2). Then, the total number of
arcs needed over all times of the form px/py + ε with
px, py ≤ a is at least n/(2m1/3) ·Θ(a2) = Ω(n2/m),
which proves the theorem.
It remains to prove the claim that at least half of

the arcs in the path are between point objects xi, xj

such that ξ∗i and ξ
∗
j lie on a common line of slope s.

Note that the sorted order of the point objects xi(s+
ε) corresponds to the sorted order of the orthogonal
projections of the points ξ∗i onto a line with slope
−1/(s + ε). If ε > 0 is sufficiently small, then the
projections of all the points lying on a common line of
slope s will be adjacent in this order. Let’s group the
point objects xi into subsets such that any two point
objects xi, xj for which ξ∗i and ξ

∗
j lie on a common line

of slope s are in the same subset. Then, at time s+ε,
any path in the comparison graph can enter and leave
a subset at most once. By Lemma 4 the number of
subsets is at most 4a

√
n. Hence, the number of arcs

connecting point objects in the same subset is at least

n/m1/3 − 4a
√
n = n/(2m1/3),

as claimed. �

2.4 Upper bounds for the kinetic sorting problem

It is straightforward to obtain a KDS that matches the
lower bounds of the previous section: Partition the set
S into m subsets of size at most n/m in an arbitrary
manner, and maintain each subset in a sorted array.
This gives the following result.

Theorem 6 Let S be a set of n point objects moving
on the line, where any pair of points swaps O(1) times.
For any m with 1 < m ≤ n, there is a data structure
with maintenance cost O(n2/m) such that at any time
a sorted list of the points in S can be constructed in
O(n logm) time.

3 Conclusions

We have studied trade-offs for the kinetic sorting
problem, which is to maintain a KDS on a set of points
moving on the real line such that one can quickly gen-
erate a sorted list of the points, at any given time.
We have proved a lower bound for this problem show-
ing the following: with a subquadratic maintenance
cost one cannot obtain any significant speed-up on
the time needed to generate the sorted list (compared
to the trivial O(n log n) time), even for linear motions.
This negative result gives a strong indication that

good trade-offs are not possible for a large number of
geometric problems—Voronoi diagrams and Delaunay
triangulations, for example, or convex hulls—as the
sorting problem can often be reduced to such prob-
lems. In [1], we show that the convex hull can be
maintained more efficiently if it has only few vertices.

References

[1] M.A Abam and Mark de Berg. Kinetic sorting and
kientic convex hulls. Submited to ACM Sympos. on
Computational Geometry, 2005.

[2] P. Agarwal, L. Arge, and J. Erickson. Indexing moving
points. In Proc. ACM Sympos. Principles Database
Syst., pages 175–186, 2000.

[3] P. Agarwal, L. Arge, J. Erickson, and H. Yu. Effi-
cient tradeoff schemes in data structures for querying
moving objects. In Proc. 12th European Sympos. on
Algorithms, pages 4–15, 2004.

[4] P. Agarwal, J. Gao, and L. Guibas. Kinetic medians
and kd-trees. In Proc. 10th European Sympos. on Al-
gorithms, pages 5–16, 2002.

[5] P. Agarwal, L. Guibas, J. Hershberger, and E. Veach.
Maintaining the extent of a moving point set. In Proc.
5th Workshop Algorithms and Data Structurs, pages
31–44, 1997.

[6] J. Bash, L. Guibas, and J. Hershberger. Data structure
for mobile data. J. Algorithms, 31:1–28, 1999.

[7] M. de Berg. Kinetic dictionaries: How to shoot a mov-
ing target. In Proc. 11th European Sympos. on Algo-
rithms, pages 172–183, 2003.

[8] L. Guibas. Kinetic data structure: a state of art
report. In Proc. 3rd Workshop Algorithmic Found.
Robot., pages 191–209, 1998.

[9] J. Hershberger and S. Suri. Kinetic connectivity of
rectangles. In Proc. 15th ACM Sympos. Comput.
Geom., pages 237–246, 1999.

[10] E. Weinstein. CRC Concise Encyclopedia of Mathe-
matics. CRC Press, 1999.

174




