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Abstract

We consider the expected number of Voronoi vertices
(or number of Delaunay cells for the dual structure)
for a set of n i.i.d. random point sites chosen uniformly
from the unit d-hypercube [0, 1]d. We show an upper
bound for this number which is linear in n, the number
of random point sites, where d is assumed to be a
constant. This result matches the trivial lower bound
of n.
This is an open problem since several years. In

1991, Dwyer [2] showed that for a uniform distribution
from the unit d-ball the average number of Voronoi
vertices is linear in n and it is commonly assumed that
this holds for any reasonable probability distribution.

1 Introduction

Voronoi diagrams are a fundamental structure in sev-
eral fields of science besides mathematics and com-
puter science such as physics, geology, agriculture,
geography, etc. Named after the Russian mathemati-
cian Voronoi [10] they have been ‘reinvented’ by other
researchers, e.g., by the physicists Wigner and Seits
[11] or the meteorologist Thiessen [9].
The Voronoi diagram of a set S of n points – called

sites – partitions space into n regions, one per site.
The region of a site s consists of all points that are
closer to s than to any other site. The straight-line
dual of the Voronoi diagram in the plane and its ex-
tension to higher dimensions is called the Delaunay
triangulation. A triangulation of a set S of sites is a
complete partition of the convex hull of S into fully di-
mensional simplices having the sites as vertices. The
Delaunay triangulation is the unique triangulation of
the set of sites such that the circumsphere of every
simplex contains no other site in its interior. The
Voronoi diagram can be computed in linear time from
the Delaunay triangulation, using the one-to-one cor-
respondence between their faces.
Voronoi diagrams have the great advantage to be a

rather simple but quite elegant structure with many
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extensions obtained by varying metric, sites, environ-
ment, and constraints. In computer science they are
widely used in clustering, mesh generation, graphics,
curve and surface reconstruction, and other applica-
tions.
A vast variety of basic and (relatively) simple algo-

rithms exists for their construction such as the plane
sweep, the divide-and-conquer, the incremental, and
the gift-wrapping algorithm, see also Chapter 20 in
the Handbook of Discrete and Computational Geom-
etry [5]. In fact most of these algorithms are ac-
tually specialized convex hull algorithms since there
is a close connection with convexity. Any (d + 1)-
dimensional convex hull algorithm can be used to
compute a d-dimensional Delaunay triangulation. All
these algorithms depend in their run time on the num-
ber of faces of the Delaunay triangulation. Unfortu-
nately, in d dimensions this number is Θ(n�d/2�) in
the worst case [7, 8] (for the usual diagram with the
Euclidean metric).
Recent research attempts to quantify situations

when the complexity of the Voronoi diagram is low
or when it is high [4]. The average case complex-
ity was considered by Dwyer [2] who showed that for
n i.i.d. random point sites chosen uniformly from the
unit d-ball the expected number of Delaunay simplices
is Θ(n). It has been conjectured that this bound also
holds for any uniform distribution in a convex domain
but until now no explicit proofs were given [2, 6].
For further reading on Voronoi diagrams and De-

launay triangulations we refer to the survey by Franz
Aurenhammer [1], the book by Herbert Edelsbrunner
[3] and Chapter 20 in the Handbook of Discrete and
Computational Geometry [5].

2 Average case

In this section we will present an average case analysis
for the number of Delaunay cells. Let P be a set
of n i.i.d. random points chosen uniformly from the
unit d-hypercube [0, 1]d. Let D(P) be the Delaunay
triangulation of P. Generally, we will use that

E
[
number of Delaunay simplices of D(P)

]
=(

n

d+ 1

)
·Pr

[
c-ball(∆) is empty

]
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where ∆ is a random d-simplex, i.e., it is the convex
hull of d+1 random point sites chosen uniformly from
[0, 1]d and c-ball(∆) is the smallest d-ball enclosing ∆.
Unfortunately, in general it is

Pr
[
c-ball(∆) is empty

]
%=
(
1− vol(c-ball(∆))

)n−(d+1)

for the following reason. All random point sites are
from inside [0, 1]d while some part of c-ball(∆) might
lie outside of [0, 1]d. Of course, the probability
for a random point site to be in the outer part of
c-ball(∆) is equal to 0 and therefore we must not
consider the outer part. This causes the main dif-
ficulty in our analysis namely to bound the volume of
c-ball(∆) ∩ [0, 1]d.
Fortunately, we can show the following crucial

lemma though we postpone the proof to Section 3.

Lemma 1 Let ∆ be a random d-simplex, i.e., its d+
1 vertices are i.i.d. random points chosen uniformly
from [0, 1]d. Then for any constant a ∈ [0, 1] it is

Pr
[
vol

(
c-ball(∆) ∩ [0, 1]d

)
≤ a

]
≤ constd · ad

where constd is a constant depending only on d.

Based on this lemma we will now establish the main
theorem of this section.

Theorem 2 For n i.i.d. random points sites chosen
uniformly from [0, 1]d it holds that

E
[
number of Delaunay simplices

]
= O(n) .

Proof. The main idea of the proof is to consider
(classes of) simplices with a ‘large’ circumball that are
very likely to have another point site in their circum-
ball, i.e., these simplices are not Delaunay simplices.
Then we show that the remaining simplices with a
‘small’ circumball are very few.
Let us assume w.l.o.g. that n is a power of 2. Let us

consider the
(

n
d+1

)
possible simplices that have d + 1

of the given n random point sites as vertices. For
the simplices with ‘large’ circumball we define classes
S0, . . . ,Slog n−1 s.t. for a simplex ∆ we have that

∆ ∈ Si ⇔
1
2i+1

< vol
(
c-ball(∆) ∩ [0, 1]d

)
≤ 1
2i

.

From Lemma 1 it follows immediately that

Pr
[
∆ ∈ Si

]
≤ Pr

[
vol

(
c-ball(∆) ∩ [0, 1]d

)
≤ 1
2i

]
≤ constd ·

(
1
2i

)d

.

The probability for a simplex ∆ ∈ Si to be a Delaunay
simplex is

Pr
[
c-ball(∆) is empty |∆ ∈ Si

]
≤

(
1− 1

2i+1

)n−(d+1)

≤
(
1
e

)n−(d+1)
2i+1

≤
(
1
2

)n−(d+1)
2i+1

.

Now we can bound the expected number of Delaunay
simplices for each class Si.
For 0 ≤ i ≤ log n− 1 it is

E
[
number of Delaunay simplices ∈ Si

]
ABSTANDABSTANDABS

≤
(

n

d+ 1

)
·Pr

[
∆ ∈ Si

]
ABSTA ·Pr

[
c-ball(∆) is empty |∆ ∈ Si

]
≤

(
n

d+ 1

)
· constd ·

(
1
2i

)d

·
(
1
2

)n−(d+1)
2i+1

.

The expected number of Delaunay simplices for all
classes S0, . . . ,Slog n−1 is

log n−1∑
i=0

E
[
number of Delaunay simplices ∈ Si

]
ABSTANDABSTAN

≤
(

n

d+ 1

)
· constd

log n−1∑
i=0

(
1
2

)i·d+
n−(d+1)
2i+1

=
(

n

d+ 1

)
· constd

log n−1∑
i=0

(
1
2

)(log n−(i+1))·d+
n−(d+1)

2logn−(i+1)+1

=
(

n

d+ 1

)
· constd ·

1
nd

log n−1∑
i=0

(
1
2

)2i·(1− d+1
n )−(i+1)·d

≤ n · constd ·
(
(d+ 2) · 2(d+3)·d + 1

)
= O(n) .

The last step follows immediately if d+ 2 ≥ log n− 1
since

d+2∑
i=0

(
1
2

)2i·(1− d+1
n )−(i+1)·d

≤
d+2∑
i=0

2(i+1)·d

≤ (d+ 2) · 2(d+3)·d .

In the other case it is

log n−1∑
i=d+3

(
1
2

)2i·(1− d+1
n )−(i+1)·d

≤
log n−1∑
i=d+3

(
1
2

)i

≤ 1 ,

where we assume that n ≥ 2 · (d+ 1).

The expected number of remaining simplices with
‘small’ circumball can be bounded using lemma 1, too.
Let Sre denote the set of simplices s.t. for a simplex
∆ we have

∆ ∈ Sre ⇔ vol
(
c-ball(∆) ∩ [0, 1]d

)
≤ 1

n
.

Then it is

E
[
number of simplices ∈ Sre

]
ABSTANDABSTAND

≤
(

n

d+ 1

)
·Pr

[
vol

(
c-ball(∆) ∩ [0, 1]d

)
≤ 1
n

]
≤ nd+1 · constd ·

1
nd

≤ n · constd .
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Now we can combine everything and by linearity of
expectation we get that

E
[
number of Delaunay cells

]
ABSTANDABSTAND

≤
log n−1∑

i=0

E
[
number of Delaunay simplices ∈ Si

]
+ E

[
number of simplices ∈ Sre

]
≤ n · constd ·

(
(d+ 2)(d+3)·d + 2

)
= O(n) ,

which concludes the proof of Theorem 2. �

3 Proof of Lemma 1

Let p1, . . . , pd+1 ∈ [0, 1]d be the vertices of simplex
∆ = ∆(p1, . . . , pd+1), i.e., ∆ is the convex hull of
p1, . . . , pd+1. The volume of c-ball(∆) is given by Vd ·
rd where r = r(∆) is the radius of the circumball of
∆ and Vd = πd/2

Γ(1+d/2) is the volume of the unit d-ball.
We can approximate the radius r(∆) and the volume
of c-ball(∆) by the following observation:

Observation 1 It holds that

2 · r(∆) ≥ max
1≤i<j≤d+1

‖pi − pj‖2

≥ max
1≤i<j≤d+1

‖pi − pj‖∞

=: maxwidth(∆)

and therefore it is

vol
(
c-ball(∆)

)
≥ Vd ·

1
2d
·maxwidth(∆)d .

In other words we approximate the volume of
c-ball(∆) by a fraction of the volume of a smallest
hypercube containing all the point sites p1, . . . , pd+1,
cf. Figure 1.
In a next step we will reformulate our random pro-

cess. Instead of considering d+1 many d-dimensional
random variables (= point sites) we will combine the
random variables coordinate-wise leading to d sets of
d + 1 random numbers each. In more detail, let us
again consider the point sites p1, . . . , pd+1 ∈ [0, 1]d
where pi = (p(1)

i , . . . , p
(d)
i ) for 1 ≤ i ≤ d + 1. Let

P1, . . . ,Pd be the sets s.t. Pj = {p(j)
1 , . . . , p

(j)
d+1} for

1 ≤ j ≤ d and let

width(Pj) := maxPj −minPj

denote the maximal distance between two elements
in Pj . We can now define the variable maxwidth in
another way as

maxwidth(P1, . . . ,Pd) := max
1≤j≤d

width(Pj) ,

which is consistent with the earlier definition, i.e., it
is maxwidth(∆) = maxwidth(P1, . . . ,Pd). (Therefore
we sometimes write only maxwidth.)

Figure 1: The 2 dimensional case: 3 point sites and
their circumcircles in the unit square. Generally, the
position of the smallest hypercube containing all point
sites is not uniquely defined. When intersected by
[0, 1]d consider the hypercube that has smallest inter-
section volume.

Since we actually want to bound the volume of
c-ball(∆) ∩ [0, 1]d, we consider the (smallest) hyper-
cube containing all point sites that has minimal vol-
ume when intersected by [0, 1]d. Therefore, we intro-
duce the variable value that indicates how much each
dimension contributes to the volume of the minimal
intersection between a smallest hypercube containing
all the point sites and [0, 1]d. If for a fixed dimension
the coordinates of all point sites lie close to 0 (or 1)
then the dimension contributes less than maxwidth to
the volume, namely only the distance of the maximal
coordinate to 0 (or the minimal coordinate to 1), cf.
also figure 1. In other words, the hypercube then
sticks out of [0, 1]d in this dimension.
We define now the value of set Pj to be

value(Pj) :=


maxwidth(P1, . . . ,Pd)

ABST if maxPj −maxwidth ≥ 0
ABSTand minPj +maxwidth ≤ 1

min {maxPj , 1−minPj} else .

With these definitions we can formulate the following
lemma.

Lemma 3 It holds that

vol
(
c-ball(∆) ∩ [0, 1]d

)
ABSTANDABSTAND

≥ min

{
Vd ·

(
1
2

)2d

,
1
d!

}
·

d∏
j=1

value(Pj) .

Due to space limitations we defer the proof of
Lemma 3 to a later full version of this paper.
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From now on we will consider the following ran-
dom process: we have d sets P1, . . . ,Pd of d+ 1 i.i.d.
random numbers chosen uniformly from the interval
[0, 1]. From Lemma 3 it follows that if we show that

Pr
[ d∏

j=1

value(Pj) ≤ a
]
= O

(
ad
)
, (1)

Lemma 1 is also shown.
In order to show (1) we will now establish two lem-

mas. The first one covers the case that maxwidth is
smaller than d

√
a, then it follows immediately that∏d

j=1 value(Pj) ≤ a. The second lemma covers the
case that maxwidth is larger than d

√
a and we have to

spend some more effort to show (1).

Lemma 4 For any value a ∈ [0, 1] it holds that

Pr
[
maxwidth(P1, . . . ,Pd) ≤ d

√
a
]
≤ O

(
ad
)
.

Proof. It suffices to bound the probability that
width(Pj) ≤ d

√
a for 1 ≤ j ≤ d. For set Pj we fix the

two elements with the maximal distance, i.e., we fix
maxPj and minPj where the distance between both
mustn’t exceed d

√
a. The remaining d − 1 elements

in Pj must have values between maxPj and minPj .
Now we can write

Pr
[
width(Pj) ≤ d

√
a
]
≤ ABSTANDAB

(d+ 1) · d ·
∫ 1

0

∫ Y

max{0,Y− d
√

a}
(Y −X)d−1 dX dY (2)

where the outer intergral denotes the range of element
maxPj(= Y ) and the inner integral the range of el-
ement minPj(= X). The integration boundaries as-
sure that their distance is at most d

√
a. The integrand

(Y −X)d−1 denotes exactly the probability that all
remaining d − 1 elements of Pj are between Y and
X. The factor before the integral is due to fixing the
maximal and minimal element in Pj .
In order to solve this integral we will split it up in

the following way to remove the maximum expression
from the integration boundary of the inner integral.∫ 1

0

∫ Y

max{0,Y− d
√

a}
(Y −X)d−1 dX dY

=
∫ d

√
a

0

∫ Y

0

(Y −X)d−1 dX dY

+
∫ 1

d
√

a

∫ Y

Y− d
√

a

(Y −X)d−1 dX dY

=
1
d
·
(∫ d

√
a

0

Y d dY +
∫ 1

d
√

a

a dY

)

=
1
d
·
(

1
d+ 1

· a d+1
d + a− a d+1

d

)
≤ 1

d
· a

It follows that

Pr
[
width(Pj) ≤ d

√
a
]
≤ (d+ 1) · a ⇒

Pr
[
maxwidth ≤ d

√
a
]
≤ O

(
ad
)
.AB

�

Lemma 5 For any value of a ∈ [0, 1] it holds that

Pr
[
maxwidth(P1, . . . ,Pd) > d

√
a and

d∏
j=1

value(Pj) ≤ a
]
≤ O

(
ad
)
.

The proof of Lemma 5 is very involved and rather
lengthy. We defer it also to a full version of this paper.
From Lemma 4 and Lemma 5 it follows that Equa-

tion (1) holds and thus Lemma 1 is shown.
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