
EWCG 2005, Eindhoven, March 9–11, 2005

Approximations of 3D Generalized Voronoi Diagrams

Imma Boada∗ Narćıs Coll∗ Narćıs Madern∗ J. Antoni Sellarès∗

Abstract

We introduce a new approach to approximate gener-
alized 3D Voronoi diagrams for different site shapes
(points, spheres, segments, lines, polyhedra, etc) and
different distance functions (Euclidean metrics, con-
vex distance functions, etc). The approach is based
on an octree data structure denoted Voronoi-Octree
(VO) that encodes the information required to gen-
erate a polyhedral approximation of the Voronoi di-
agram. Since the medial axis of a polyhedron is a
subset of a generalized Voronoi diagram the VO can
also be used to encode it. Using the information of
the VO we generate and visualize a polyhedral app-
roximation of a generalized Voronoi diagram, and we
also solve proximity problems that do not require an
explicit representation of the Voronoi diagram such as
nearest neighbor queries.

1 Introduction

Given a set of primitives, called Voronoi sites, the gen-
eralized Voronoi diagram partitions the space into re-
gions, one per site, such that all points in a region have
the same closest site according to some given distance
function. Many variants of these diagrams can be con-
sidered: by taking sites of different shape or nature,
associating weights to the sites, changing the underly-
ing metrics, or using individualized distance functions
for the sites [1, 2, 9]. Generalized Voronoi diagrams
are widely used in many scientific fields such as com-
puter graphics, geometric modelling, shape analysis,
robot motion planning or scientific visualization [6].
Computing a generalized 3D Voronoi diagram in-

volves the manipulation of high-degree algebraic sur-
faces and their intersections. The exact computation
of the diagram poses many problems in terms of ro-
bustness and CPU time due to the high number of
precision calculations that have to be made [9]. Since
the exact computation is known to be hard, in most of
the applications approximations of the real diagram
within a predetermined precision are used.
There are few methods to approximate generalized

3D Voronoi diagrams and most of them are restricted
to Euclidian distance. Lavender at al [8] proposed
a hierarchical approach to compute an approximate

∗Institut d’Informàtica i Aplicacions, Universitat de Girona,
Spain, {imma,coll,nmadern,sellares}@ima.udg.es. Partially
supported by grant TIN2004-08065-C02-02

Voronoi diagram of a set of general sites in arbitrary
dimension. They represent the sites by an octree and
the cells of the approximate diagram are obtained by
considering the distance to the sites. The continuity
of the boundary of the approximate diagram is not
guaranteed by any theoretical study. Vleugels et al.
[13] also proposed a hierarchical approach restricted
to convex sites that adaptively subdivides the space
into regular cells and computes the Voronoi diagram
up to a given precision. Teichmann et al. [12] pro-
posed a technique restricted to triangle sites that sub-
divides the space into tetrahedral cells. Sites are in-
serted into a standard octree and a polygonal approxi-
mation of the Voronoi diagram is computed by a wave-
front propagation strategy. None of these mentioned
works gives properties about the convergence to the
exact diagram and the computational cost. Some re-
cent papers, driven by applications and using differ-
ent approaches, investigate the approximate and the
exact practical computation of the medial axis of a
polyhedron [3, 4, 5].

2 Our Approach

We aim to define a general approach to obtain poly-
hedral approximations of generalized Voronoi dia-
grams that simultaneously support approximate near-
est neighbor queries in an efficient way. To reach our
objective we consider that the octree is the most suit-
able data structure since it allows to encode informa-
tion at different levels of detail. A straightforward
way to built this octree is by subdividing recursively
the region containing all the Voronoi sites and stor-
ing at each vertex of the node the information of its
nearest site. Despite the simplicity of this strategy,
it is costly to implement since it requires an evalua-
tion of all sites against all sites at each step of the
octree construction process. On the other hand, since
we know that rarely a Voronoi region is adjacent to
all the other Voronoi regions, it has no sense to take
into account all the sites when computing the near-
est site of a vertex node. To avoid processing all the
sites at each step of the process we have designed a
propagation strategy that detects when new informa-
tion of the sites is known and also where it has to be
stored to guarantee the correctness of the final codi-
fication. Although this strategy forces us to restrict
our proposal to diagrams with connected Voronoi re-
gions the cost of the method is reduced considerably.

163



21st European Workshop on Computational Geometry, 2005

The new main idea of our approach is the combina-
tion of the subdivision and the propagation processes.
Such a combination also provides an efficient way of
dynamically maintaining the VO under the insertion
or deletion of sites.
In the next sections we describe the VO construc-

tion and its dynamic maintenance.

2.1 Basic Definitions

The set of input sites is denoted as S = {s1, · · · , sn}
and R is the cubic region where the approximation
of the generalized Voronoi diagram must be com-
puted. Each site s is represented by a tuple s =<
Gs,Ds, Ps >, where Gs defines the geometry of the
site s, Ds is the function that gives the distance from
any point p to s and Ps, called the base point of s,
is a point such that Ds(Ps) = 0 and Ps ∈ R. Each
site si ∈ S has an associated Voronoi region V R(si).
The generalized Voronoi diagram of S, denoted V, is
defined as the partition of the plane induced by the
Voronoi regions.
Let N be a node of a octree and s a site. We say

that s is an I-site with respect to N when Ps ∈ N , a
V-site with respect to N when a vertex v of N satisfies
v ∈ V R(s) and a F-site with respect to N when it is
not a V-site and a face f of N satisfies f ∩V R(s) %= ∅.
The sites of N are the set of sites that are I-site, V-site
or F-site with respect to N . A node N is a terminal
node if it is completely contained in a Voronoi region,
i.e. the total number of V-sites, I-sites and F-sites is
one.

2.2 The VO Construction Algorithm.

The VO construction algorithm is based on a breadth
first strategy using a priority queue sorted by the level
of the node in the octree. This allows us to introduce
and update the information of the sites stored in the
VO when it is required in order to guarantee the com-
pleteness and correctness of the encoded information.
Let R be a cubical region containing S, Q the prior-
ity queue and LM the maximal subdivision level of
the VO fixed by the user. The pseudo-code of the al-
gorithm is reported below (see Algorithm 1). In the
pseudo-code the following primitives are used:
Initialize(R,S). Creates the root node from the ver-
tices of R and assigns all the sites as I-sites. It com-
putes the V-sites of the root node (i.e. the nearest
I-site of each root vertex) and initializes Q with the
root node.
Update(N). Updates the V-site of each vertex of a
node N with the nearest of its sites. The distance
from the vertex v to a site s is computed using Ds(v).
Leaf(N ,LM). Checks if node N is a leaf or not.
Subdivide(N). Creates the eight son nodes of a node
N , properly distributes the I-sites and F-sites of N to

them and computes the V-sites of the sons taking into
account the sites of N .
Propagate(N , Q). Checks the coherence between
a node N and its adjacent nodes. For each vertex
v of N with V-site s1 locates the set of its adjacent
nodes. Let N ′ be one of these nodes. If v is a vertex
of N ′ with a different V-site s2 at v, this procedure
updates this V-site with s1 and sends N ′ to Q. On
the contrary, if v is not a vertex of N ′ (i.e. it is on a
face) and s1 is different to the V-site s2 of this face,
the procedure assigns s1 to N ′ as an F-site and sends
N ′ to Q.
Compact(N). Checks if all the sons of the node N
are terminal. If they are, it prunes the son nodes.

Algorithm 1 OctreeConstruction(R, S, LM )
octree VO;
node N ;
queue Q;
VO.Initialize(R, S);
Push(Q,VO.Root());
while No Empty(Q) do
N= Pop(Q);
VO.Update(N);
if VO.Leaf(N , LM) then

VO.Propagate(N , Q);
VO.Compact(N .Parent());

else
VO.Subdivide(N);
for i = 1 to 8 do

VO.Propagate(N .Son(i), Q);
if No VO.Leaf(N .Son(i), LM) then
Push(Q, N .Son(i));

end if
end for

end if
end while

2.3 Polyhedral Approximation of the Voronoi dia-
gram

To generate a polyhedral approximation of the
Voronoi diagram we use an strategy based on the cu-
berille iso-surface extraction algorithm proposed by
Herman and Liu [7] and enhanced and optimized by
many others. Our algorithm proceeds in two steps.
First, we select leaf nodes intersected by the bound-
aries of the Voronoi diagram. Nodes whose corner val-
ues are all inside the same Voronoi region are ruled
out since no boundaries are contained within and
thus they have no effect on the final approximation.
Second, for each selected node we approximate the
boundaries of the Voronoi diagram contained in it.
To perform this approximation each selected node is
subdivided in 2×2×2 cells, one for each vertex of the
node. For each one of these vertices we evaluate the

164



EWCG 2005, Eindhoven, March 9–11, 2005

three edges incident to it. We assume that an edge
is intersected by a boundary of the Voronoi diagram
when it has different sites in its extremes. Accord-
ing to the number of intersected edges incident to the
vertex we approximate the boundary contained in the
node by none, one, two or three of the internal faces
of the cell assigned to such vertex.
Figure 1 shows some of the results obtained with

the proposed approach.

Figure 1: Voronoi diagrams of different scenes ob-
tained with our method: spheres with Euclidean dis-
tance, points with L1 distance and lines with Eu-
clidean distance.

2.4 Computational Cost

To evaluate the VO construction algorithm some con-
siderations have to be taken into account: (i) The
mean number of intersection points between a surface
of area A and a cubic grid of lines of size u (distance
between two consecutive parallel lines of the grid) is
3A
2u2 [11]. (ii) If n is the number of sites, for each level
we distribute the n sites to some nodes as I-sites. (iii)
For each node we need to locate its neighbor nodes.
This can be done in LM worst time, but the expected
time for locating neighbors is constant [10]. (iv) The
proposed algorithm subdivides nodes that contain a
piece of a bisector. We are going to assume that there
exist a level LT such that if LM > LT all the sites are
a V-site of some node and all the pieces of the bisec-
tors are contained in the Voronoi diagram V. (v) Let
l ≤ LM be a level of the octree, V the boundary of
the Voronoi diagram and V (l) the boundary of the
Voronoi diagram of the sites that are V-site in some
node of level l. Let UV (l) =

⋃l
i=1 V (i). From the last

consideration we have that if l > LT then the piece of

the bisector contained in a node of level l is contained
in V , otherwise is contained in UV (l).
Let A be the area of V , A(l) the area of UV (l),

N(LM ) the mean number of nodes generated by the
construction algorithm of a VO of a maximum level
LM and T (LM ) the mean running time of this algo-
rithm. According to the previous considerations we
obtain the following results.
If LM ≤ LT then N(LM ) = O

(
4LM+1

a2 A(LM )
)

and T (LM ) = O

(
nLM +

LM∑
l=1

4l

a2A(l)

)
. Otherwise,

if LM > LT then N(LM ) = O
(

4LM+1

a2 A
)
and

T (LM ) = O

(
nLM +

LT∑
l=1

4l

a2A(l) +
4LM+1−4LT+1

a2 A

)
.

2.5 Dynamic Maintenance

The potential of the proposed VO has led us to con-
sider the dynamic maintenance of this data structure
as an essential operation. Given a VO of a Voronoi
diagram approximation and a site s to be inserted the
insertion algorithm applies an expansion process that
goes from the leaf node containing the base point Ps

to all the nodes containing a piece of the boundary of
its associated Voronoi region. The algorithm proceeds
as follows. First, it applies a top-down VO traversal
to identify the leaf node N that contains Ps, enters
s as an I-site of N and initializes with N a queue Q
used to maintain the nodes to be processed. Then,
Q is processed as in the VO construction process (see
Algorithm 1). Given a VO of a Voronoi diagram app-
roximation and a site s to be deleted, the deletion al-
gorithm applies a contraction process. It starts with a
node containing part of the boundary of the Voronoi
region of s, and processes all the nodes containing
part of this region. The deletion algorithm performs
a top-down VO traversal to identify the leaf node N
that contains Ps and erases s as I-site of N . Starting
from N , it traverses the nodes that have s as a V-site
until a node N ′ that contains part of the boundary
of V R(s) is reached. Next, it initializes with N ′ a
queue Q which is processed as in the VO construc-
tion process but applying a new update procedure: a
V-site is updated using the sites of the node and the
sites of all adjacent nodes and excluding s (see Figure
2). The cost of both algorithms is proportional to the
nodes intersected by the Voronoi region associated to
the site to be inserted or deleted.

3 Medial Axis

To codify the medial axis in a VO we modify the VO
construction algorithm in order to avoid the subdivi-
sion of the exterior nodes of the polyhedron and the
nodes containing pieces of bisectors between adjacent

165



21st European Workshop on Computational Geometry, 2005

Figure 2: Results obtained by applying to scene of
Figure 1(a) the deletion algorithm. Only the Voronoi
region of the central sphere before and after the dele-
tion is visualized.

sites. Such a modification implies the definition of
two new terminal node criteria.
The first new criterion aims to avoid the subdivision

of the exterior nodes. We associate a unitary vector
ns to each site s as follows. If s is a face then ns is
the normal vector to the face oriented outwards the
polyhedron, if s is an edge then ns is the sum of the
vectors associated to its adjacent faces and if s is a
point then ns is the sum of the vectors associated
to its adjacent faces. Let v be a vertex of a node
and s its V-site with base point ps. The vertex v is
exterior to the polyhedron if (v−ps) ·ns > 0. A node
N is a terminal node if all its vertices are exterior
and any I-site is contained in it. The second new
terminal criterion avoids the subdivision of the nodes
containing pieces of bisectors between adjacent sites.
A node N is a terminal node if all its edges have two
V-sites adjacent in the polyhedron.
In Figure 3 we show the medial axis of a polyhe-

dron. Note that what we obtain is a simplified medial
axis [5].

Figure 3: Polyhedron and its medial axis.

4 Nearest Neighbor Queries

The large variety of Generalized Voronoi diagrams
that can be encoded by a VO and its hierarchical na-

ture allows us to solve the nearest neighbor problem in
many cases. Let S = {s1, · · · , sn} be a set of sites and
R a region containing S. Given a query point q ∈ R,
we want to find the site s such thatDs(q) ≤ Ds′(q) for
all s′ ∈ S; s′ %= s. To approximately solve the problem
it suffices to construct the VO of S in R, next deter-
mine in O(LM ) time the VO leaf node containing the
point q and select the nearest site between the set of
V-sites of the node.
In a similar way we can solve other kind of queries

such as the set of nearest sites of a given site and the
closest pair of sites.

References

[1] F. Aurenhammer. Voronoi diagrams: A survey of
a fundamental geometric data structure. In ACM
Computer Surveys 23(3), pages 686–695, 1991.

[2] F. Aurenhammer and R. Klein. Voronoi diagrams. In
J.R. Sack and J. Urrutia (Eds.), Handbook of Com-
putational Geometry, pages 201–290, Elsevier, 2000.

[3] T. Culver, J. Keyser and D. Manocha. Exact Compu-
tation of the Medial Axis of a Polyhedron. In CAGD
21(1), pages 65–98, 2004.

[4] M. Etzion and A. Rappaport. Computing Voronoi
skeletons of a 3-D polyhedron by space subdivision.
In Computational Geometry 21, pages 87–120, 2002.

[5] M. Foskey, M. Lin, and D. Manocha. Efficient com-
putation of a simplified medial axis. In Journal of
Computing and Information Science in Engineering
3, pages 274-284, 2003.

[6] C. Gold. The Voronoi Web Site,
http://www.voronoi.com/.

[7] G.T. Herman and K.H.. Liu. Three Dimensional Dis-
play of human Organs from Computed Tomograms.
In Computer Graphics and Image Processing 9(1),
pages 1–21, 1979.

[8] D. Lavender, A. Bowyer, J. Davenport, A. Wallis and
J. Woodwark. Voronoi diagrams of set-thoretic solid
models. In IEEE Comput. Graph. Appl. 12(5), pages
69–77, 1992.

[9] A. Okabe, B. Boots, K. Sugihara and S.N. Chiu.
Spatial Tessellations: Concepts and Application of
Voronoi Diagrams. John Wiley & Sons, 2000.

[10] H. Samet. Applications of Spatial Data Struc-
tures: computer graphics, image processing, and GIS.
Addison-Wesley, 1993.

[11] K. Sandau. How to estimate the area of a surface us-
ing the spatial grid. In Acta Stereologica 6/III, pages
31–36, 1987.

[12] M. Teichmann and S. Teller. Polygonal approxi-
mation of Voronoi diagrams of a set of triangles in
three dimensions. Technical Report 766, Laboratory
of Computer science, MIT, 1997.

[13] J. Vleugels and M. Overmars. Approximating Gener-
alized Voronoi Diagrams in Any Dimension. In Int. J.
Computational Geometry and Applications 8, pages
201–221, 1998.

166




