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Computing Transportation Voronoi Diagrams in Optimal Time

Yaron Ostrovsky-Berman ∗

Abstract

We present the first time-optimal algorithm for com-
puting the Voronoi Diagram under the metric induced
by a transportation network with discrete entry and
exit points. For input with n sites, k stations, and
e transportation lines, the algorithm computes the
Voronoi Diagram in O

(
(n+ k) log(n+ k) + e

)
time.

1 Introduction and related work

Shortest Path Maps (SPM) and Voronoi Diagrams are
well known geometric tools for answering distance re-
lated queries. The SPM is a subdivision of space,
which allows finding the shortest path from a source
point to a query point. The Voronoi Diagram is a sub-
division of space which allows finding the site closest
to a query point (multiple sources). These tools are
useful in Geographic Information Systems, where the
realism of the results depends on the underlying ter-
rain model.
There have been many attempts to model the com-

plexity of real world terrain with a simple mathemat-
ical model. The most general of these is the weighted
region model [6] in which the plane is divided into
regions with weights corresponding to the difficulty
of crossing the terrain. There is no efficient algo-
rithm for finding shortest paths in this general model
without approximating the solution. One important
special case is shortest paths amidst polygonal obsta-
cles in the plane, in which the obstacles have infinite
weight and the free space has unit weight. Mitchell
[5] gave the first sub-quadratic solution, which runs
in O(n) space and O(n3/2+ε) time. Hershberger and
Suri [4] presented the first optimal time algorithm,
with O(n log n) space and time complexity. Both em-
ploy the continuous Dijkstra paradigm. Abellanas et
al. [1] survey recent results obtained for models of
urban environments.
In this paper, we model public transportation net-

works which provide time saving routes with discrete
entry and exit points. We describe the network by an
undirected graph with positive edge weights propor-
tional to travel time, and assume the entire plane is
accessible by foot. This type of transportation net-
work cannot be modelled with weighted regions be-
cause it allows crossing the transportation line at no
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time cost, but restricts entrance to and exit from the
network to the fixed stations. The proposed model
was introduced by Münch in his PhD thesis [7], which
studies a network of airlifts over the Euclidean plane.
The algorithm for computing the Voronoi Diagram in
the induced airlift metric was briefly discussed in Ai-
cholzer et al. [2] and later expanded by Palop in her
PhD thesis [9]. The algorithm completes the network
graph by assigning Euclidean weights to disconnected
stations, and applies the discrete Dijkstra algorithm
to compute the station weights. The station weights
are used as input to the Additively Weighted Voronoi
Diagram (AWVD) algorithm, from which the desired
subdivision is obtained. The complexity of the algo-
rithm is O(k2+n) space and O

(
k2+(n+k) log(n+k)

)
time, where n is the number of sites and k is the num-
ber of stations. The authors also raised the question
of whether there exists a matching lower bound for
the time complexity.
Our previous work [8] improves upon this result by

computing the station weights with an input sensitive
algorithm having the same worst case time complexity
and O(n+k log k+e) space complexity, where e is the
number of transportation lines. The algorithm has
provably better time bounds under realistic regularity
assumptions on the input.
In this paper, we describe the properties of the met-

ric induced by the transportation network, and set-
tle the question of the time complexity by combin-
ing the continuous Dijkstra method with the reduc-
tion to AWVD to obtain optimal O(k log k + e) and
O((n+k) log(n+k)+e) time algorithms for the SPM
and the Voronoi Diagram, respectively.

2 Definitions and properties

Let T ⊂ R2 denote a set of station positions in the
plane, and let E denote the connection relation be-
tween the stations, such that (t1, t2) ∈ E if and only
if t1, t2 ∈ T and the stations are connected by a line.
Denote the positive weight of a transportation line
(t1, t2) ∈ E by w(t1, t2) and define it to be infin-
ity when the points are not connected stations. The
graph 〈T,E,w〉 describes the transportation network.
For the Voronoi diagram problem, the set S ⊂ R2

denotes the sites. Let d(p, q) denote the Euclidean
distance between two points in the plane. The trans-
portation distance between two points is defined re-
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Figure 1: The unit disc. Stations t1, t2, t3, t4 are con-
nected by solid transportation lines. The hatched disc
is the unit disc of p, and the shaded discs comprise
the unit disc of q.
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Figure 2: The bisector of two points. Solid circles
are stations, the thin solid lines connecting them are
transportation lines. The weight of the transportation
lines is tenth of the Euclidean distance between the
stations. The thick curve is the bisector of p and
q. The shaded region is part of the bisector because
dT (p, t4) = dT (q, t4).

cursively as follows:

dT (p, q) =
min

{
d(p, q), w(p, q), mint∈T {dT (p, t) + dT (t, q)}

}
The unit disc of a point p in the metric induced by

the transportation distance, BT (p) = {x|dT (p, x) ≤
1}, depends on the proximity of p to the network (Fig-
ure 1). This leads to the following properties:

1. The Voronoi cell of a site can have several con-
nected components.

2. The transportation distance bisector of two
points p and q, bT (p, q) = {x|dT (p, x) =
dT (q, x)}, consists of line segments (points whose
shortest path to p and q is a straight line), hy-
perbolic arcs (points whose shortest path to p
or q uses the transportation network), and star
shaped regions bounded by line and hyperbolic
segments (points whose shortest paths to p and
q begins with a shared network station). Figure
2 illustrates these cases.

As shown in [8, 9], the shortest path map is con-
structed by computing the transportation distance

from the source to all the stations, then using this
distance as a negative weight in the AWVD of the
source and the stations. In the AWVD, the dis-
tance between a point p and a site s with weight ws

is dAWV D(p, s) = d(p, s) − ws. Fortune [3] showed
how to construct the AWVD in O(n log n) time. The
transportation Voronoi diagram is constructed simi-
larly to the SPM, only now the weights are assigned
according to the closest site in transportation dis-
tance.

3 The continuous Dijkstra method

We now show how to modify the continuous Dijkstra
method [4, 5] to handle the transportation distance
metric instead of the geodesic distance induced by
polygonal obstacles. For simplicity of presentation,
we address the single source problem only. The ex-
tension to multiple sources is straightforward.
The continuous Dijkstra method simulates the

propagation of a wavefront from the source point. At
simulation time δ, the wavefront is the locus of points
with transportation distance δ from the source. The
wavefront is comprised of wavelets, which are points
having the same predecessor in the shortest path to
the source. In its purest form, the simulation ad-
vances between discrete events of the following type:
1. A wavelet collides with a station; 2. A wavelet col-
lides with another wavelet; 3. A wavelet is engulfed
by neighboring wavelets and disappears. In practice,
identifying these events as they occur is difficult, and
the method of [5] does not attempt to do so. Instead
it ensures that when the events are discovered, there
is only local work to do to fix the discrepancy. The
method of [4] uses a clever subdivision of the plane
that guides the wavefront propagation, and computes
“approximate wavefronts” at the edges of this subdi-
vision, which are used in the final stage to construct
the shortest path map.
In the geodesic problem, an event of type 1 is a

collision of the wavelet with an obstacle vertex. This
vertex becomes the generator of a new wavelet. In the
transportation metric, the station encountered is not
a new generator, but its neighbors in the transporta-
tion network possibly become generators in the future
(after a time equal to the connection time, which is
the edge weight). We call the station that schedules
new generators a transporter. For each station t we
store the time g(t) in which t becomes a generator (ini-
tialized to infinity), and the set p(t) of predecessors
of t in the shortest path to the source s (the cardinal-
ity of p(t) is greater than one when the path is not
unique). Suppose a wavelet hits station t at time δ.
The simulation algorithm performs the update oper-
ations required by an obstacle vertex collision event,
but instead of creating a new generator at t, it first
checks if δ ≤ g(t), and if so proceeds as described
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Procedure propagate-transporter(t, δ)
1. set g(t) = δ
2. for-each r with (t, r) ∈ E:
2a if δ + w(t, r) < g(r) then

- set g(r) = δ + w(t, r) and set p(r) = t
- insert new-generator-event(r) into event
queue at time g(r)

2b else-if δ + w(t, r) = g(r) then
- set p(r) = p(r) ∪ t
end for-each

Table 1: Wavefront propagation through the network.

in Table 1, possibly scheduling new generators at the
neighboring stations.
When the simulation time reaches a new-generator-

event(r), a new wavelet with generator r is created
(since the algorithm does not clear future events for
the same r in step 2a, the simulation simply continues
if r was already processed). The new wavelet auto-
matically triggers an event of type 1 for a collision
with r. Events of type 2 and 3 are handled as in the
geodesic problem.

Observation 1 The wavefront propagation algo-
rithms of [4, 5] both detect collisions with an obstacle
vertex t and set g(t) correctly before the vertex is used
as a generator, and this property holds when network
stations are treated as obstacle vertices.

We now prove that this observation holds after the
modification made in propagate-transporter.

Lemma 1 For every station t in the transportation
graph, the propagation algorithm sets g(t) = dT (s, t)
before t is used as a generator or a transporter.

Proof. By induction on the number of links in the
shortest transportation distance path from s to t.
If there is one link, then the shortest path is Eu-
clidean, and according to Observation 1 a wavelet
leaving s will encounter t and set g(t) correctly. If
the path is longer, then by induction, the predeces-
sor p of t has g(p) = dT (s, p) set before it is used
as a generator or a transporter. If (p, t) /∈ E then
part of the shortest path uses the transportation net-
work, and p is the terminating station. Thus p was
scheduled to be a generator by its predecessor in
the path (step 2 of propagate-transporter). Since
dT (s, p) < dT (s, t), a wavelet is generated by p which,
according to Observation 1, will collide with t and
set g(t) correctly. If (p, t) ∈ E then p is a trans-
porter and step 2 of propagate-transporter correctly
sets g(t) = g(p) + w(p, t) = dT (s, t). �

Lemma 1 proves the correctness of the modification to
the wavefront simulation. The rest of the algorithm
is unchanged, thus when it terminates, the values of
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Figure 3: The transportation Voronoi diagram of the
Paris Metro and churches. Solid discs are Metro sta-
tions, the number inside is the value of dT (s, t) for the
closest church. Solid thin lines are the Metro lines,
and numbers near their middle denote their weights.
Solid squares are churches. A dashed line from a
church to a station means that the church is closest
to the station. Solid curves are the boundaries of the
AWVD cells of the stations and the churches.

g(t) equal dT (s, t) for all t ∈ T . As noted above, the
AWVD of the source and the stations, with weights
equal to the negative value of the transportation dis-
tance, gives the shortest path map of s. The predeces-
sor information p(t) is used backwards to determine
the tree of shortest paths from s.
Figure 3 shows the transportation Voronoi diagram

of part of the Paris Metro and nearby churches. The
station weights were computed with our implementa-
tion of the reduction to AWVD in [8]. The AWVD
was computed with the CGAL Apollonius graph class.
Note that the Madeleine church controls more area be-
cause of its proximity to a Metro station. Its Voronoi
cell has two connected components and consists of the
the church’s cell plus the cells of five nearby stations.

4 Complexity analysis

We now analyze the complexity of the algorithm,
starting with the modification described in Section
3. In what follows n, k, and e stand for the num-
ber of sites, stations and transportation lines, respec-
tively. We assume the event queue is implemented
with a Fibonacci heap, which supports insertions and
minimum extractions in amortized O(1) and O(log n)
time, respectively. Assuming the wavefronts are ef-
ficiently pruned (as is the case in [5, 4]), there are
O(1) events of type 1 per station. The modification
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to the event handler performs O(1) comparison oper-
ations and O(1) insertions to the queue per neighbor
of t in the graph. Because each edge is visited O(1)
times, the total added complexity of the modification
is O(e).
The complexity of the entire algorithm depends on

the continuous Dijkstra method used. The algorithm
of Mitchell [5] results in optimal O(n + k + e) space
complexity and O

(
(n+ k)3/2+ε + e

)
time complexity,

while the algorithm of Hershberger and Suri [4] results
in O

(
(n+k) log(n+k)+e

)
space and time complexity,

which is time-optimal.
From a practical standpoint, we note that the al-

gorithms presented in [4, 5] are complicated and have
not been implemented. Our previous algorithm [8] ig-
nores events of types 2 and 3 altogether, and instead
prunes the propagation of wavelets by bounding the
radius of their effect on the transportation distance.
The bound equals the difference between the maximal
and minimal transportation distance from a station to
a site, and thus decreases monotonically as the algo-
rithm advances, lowering the cost of each iteration.
On classes of transportation networks such as clus-
ters or uniform distribution of stations and sites, the
complexity of this method is provably lower than the
quadratic worst case, and experiments show that this
is true of most networks, including random networks
and sites.

5 Conclusion

We have presented the first time-optimal algorithm
for computing the transportation Voronoi Diagram.
The existence of an optimal space and time algo-
rithm is an open problem related to geodesic distance
Voronoi Diagram.
To make the transportation network more realistic,

the model can be augmented by access, connection,
and waiting times of the stations and lines. See [8]
for details. Furthermore, the combination of the al-
gorithm proposed here with the original algorithm for
the geodesic problem can be used for solving shortest
path problems in the presence of polygonal obstacles
as well as a transportation network, enriching the ur-
ban environment model.
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