
EWCG 2005, Eindhoven, March 9–11, 2005

Constructing the City Voronoi Diagram Faster

Robert Görke∗ Alexander Wolff∗

Abstract

Given a set S of n point sites in the plane, the City
Voronoi diagram partitions the plane into the Voronoi
regions of the sites, with respect to the City metric.
This metric is induced by quickest paths according to
the Manhattan metric and an accelerating transporta-
tion network that consists of c non-intersecting axis-
parallel line segments. We describe an algorithm that
constructs the City Voronoi diagram (including quick-
est path information) in O((c+n)polylog(c+n)) time
using a wavefront expansion. For c ∈ Ω(√nlog3(n))
our algorithm is faster than an algorithm by Aich-
holzer et al. [2], which takes O(n log n+c2 log c) time.

1 Introduction

Let’s assume Manhattan to be void of car traffic by
the year 2050. Only a network of conveyors acceler-
ates the movement of countless busy visitors in this
huge pedestrian zone. As is known streets are ar-
ranged isothetically in Manhattan, so given a general
direction, pedestrians can intuitively find a footpath
to one of the many post offices. But time is precious,
and thus a technique is required, telling an arbitrary
pedestrian the quickest path to the post office that
can be reached most quickly.

2 Concretization

We concretize the situation as follows. The trans-
portation network C = {e1, . . . , ec} consists of c iso-
thetic line segments, that are only allowed to touch
at endpoints. Each segment ei is assigned a speed
gi > 1. We require that the number of different speeds
is constant. A segment can be accessed and left at any
point. The n sites S = {ω1, . . . , ωn} are scattered ar-
bitrarily in the plane. Movement off the network takes
place with unit speed with respect to the Manhattan
metric, while a segment ei can be used (bidirection-
ally) to move with speed gi. We define the distance
d between two points a and b in the plane to be the
temporal length of the quickest path Π between them:
d(a, b) = dManhattan(Π \C)+

∑
ei∈C(

dManhattan(ei∩Π)
gi

).

∗Fakultät für Informatik, Universität Karlsruhe,
http://i11www.ira.uka.de/people. R. G. supported by
the European Commission within FET Open Projects DELIS,
A. W. supported by grant WO 758/4-1 of the German Science
Foundation (DFG)

The definition of quickest paths induces a metric in
the plane that we call City metric. As usual we de-
fine the Voronoi region reg(ωi) of a site ωi as the set
of all points that are not closer to any other site ωj .
If we associate borders between regions in an arbi-
trary manner with one of the involved sites, we get
a partition of the plane called the City Voronoi dia-
gram VC(S). Given a query point q ∈ R2, the site
in S closest to q can be determined by point location
in time logarithmic in the complexity of VC(S). By
virtue of our construction method we obtain a refine-
ment VC(S) [2] of the City Voronoi diagram that can
then also report the quickest path to the closest site
in additional time O(L), with L being the path com-
plexity. We now state our main result. The proof will
be given at the end of this paper.

Theorem 1 (Construction of VC(S)) Given
an isothetic transportation network C with c
edges, a constant number of different speeds
on these edges and a set S of n sites, the re-
fined City Voronoi diagram can be computed in
O((c + n)log5(c + n) log log(c + n)) time using
O((c + n)log5(c + n)) storage. The refined City
Voronoi diagram answers queries asking for the
quickest path to S in O(L + log(c + n)) time, where
L is the complexity of the path.

3 Previous work

The City metric was first introduced by Abellanes et
al. [1] who derived basic results for a single straight
line as transportation network. Aichholzer et al.
[2] presented an algorithm that constructs the City
Voronoi diagram of n sites and c segments given a
uniform network speed in O(n log n + c2 log c) time
using O(c + n) space. The resulting data structure
answers quickest-path queries in O(L + log(c + n))
time. In their algorithm the authors first prepare a
set of time-stamped nodes in the plane using the con-
tinuous Dijkstra method [4]. Then carefully adapted
straight skeleton figures scheduled at these nodes are
computed by employing well known techniques for the
construction of abstract Voronoi diagrams.

4 The wavefront expansion

Our algorithm constructs the City Voronoi diagram
VC(S) by simulating the expansion of a wavefront

155

21st European Workshop on Computational Geometry, 2005

starting at the set S of sites. At time t the wave-
front is the set of all points whose distance from S
is t in the City metric. The key observation is, that
during the course of the expansion each point of the
plane is reached by the quickest possible path starting
from S. In order to tell the quickest path from p to S
we therefore need to note how the wavefront reached
p and invert the path taken by the wavefront. This is
done as follows. By storing where the wavefronts of
different sites merge and by tracing vertices resulting
from such mergings, we immediately obtain the par-
tition VC(S), see Figure 1. We can trace the path of
wavefront vertices in order to obtain a refinement of
VC(S). Since the wavefront consists exclusively of ver-
tices and straight line segments (due to the properties
of the City metric), this refined City Voronoi diagram
VC(S) partitions VC(S) into regions of uniform wave-
front expansion. Thus, if we store for each such region
the direction the wavefront moved in, we can tell for
all points of that region how to reach the youngest ob-
ject of this region. By doing this repeatedly, we reach
S, tracing back the expansion of the wavefront. See
Figure 2 for an example. We discretize the continu-

ω1

ω2

Figure 1: The wave-
fronts of two sites merge,
tracing out a border.

e2

ω1

e1

p

Figure 2: The path of
the wavefront guides the
way from p back to ω1.

ous expansion of the wavefront at the points in time
when an interaction, collision or an interference be-
tween the wavefront and the network or even another
part of the wavefront happens. We call each of these
points in time events. At an event the combinatorial
shape of the wavefront changes.

4.1 Events

We distinguish four types of events, depending on the
situation. A vertex of the wavefront hitting a segment
generates a type-A-event, while an edge of the wave-
front sliding into a network node triggers a type-B-
event. A type-C-event occurs when a wavefront edge
shrinks to zero length and finally, a type-D-event is a
collision of two parts of the wavefront. It is not hard
to see the following:

Observation 1 For any type of event the extent of
changes on the wavefront is constant.

As a consequence of this observation, we need to focus
on the detection of events. An upcoming event can be
detected by comparing for all edges and vertices of the
wavefront the timestamp of their next collision. This
comparison leads us to the notion of virtual events.
A virtual event is an event that seems likely to occur
during the wavefront expansion, but is then prevented
by some other event with a lower timestamp, see Fig-
ures 3 and 4 for an example. We can even detect
events that do happen, but still don’t contribute to
the complexity of VC(S). We call such events redun-
dant, see Figure 5 for an example. Events that are
neither redundant nor virtual are relevant and take
part in shaping VC(S). Next we discuss an important
result about the total number of relevant events.

v1

v2

e1

Figure 3: A type-A-
event is pending.

v1

v2

e1

v3

v4

Figure 4: The event has
been prevented.

4.2 The linear complexity

Adapting a result of Aichholzer et al. [2] to a constant
number of network speeds we get the following result:

Theorem 2 The number of edges, vertices and faces
of the refined City Voronoi diagram VC(S) is linear in
the number c of segments and the number n of sites.

This gives rise to the fact that the number of relevant
events occurring during the wavefront expansion is
also linear in (c + n). Opposed to that, the number
of redundant events can amount to Θ(c(c + n)) (see
Figure 5), and the number of virtual events can even
add up to Θ(c + n)2. While these events are easy
to identify, we cannot treat them explicitly. Thus we
are left with the task of efficiently detecting the next
event while implicitly ignoring irrelevant ones. In the
next subsection we consider a unifying approach for
detection of all four types of events.

4.3 The wavefront in space

We now add a third dimension (z-axis) to our situ-
ation, such that a positive z-component is added to
the wavefront expansion which starts in the x-y-plane.
Consequently wavefront vertices and edges trace out
rays and polygons, respectively. Accordingly all net-
work segments are extended to vertical unbounded
rectangles and network nodes are extended to half-
lines, both being unbounded in positive z-direction. If

156

EWCG 2005, Eindhoven, March 9–11, 2005

ω1

Figure 5: Cascade of re-
dundant type-A-events
(marked by disks).

x

y

z

e1

e1

e2

e2

vW ωi

vW

Figure 6: A type-A-
event in space involving
vW and e1 is imminent.

the z-component of the wavefront expansion has unit
speed we can easily tell the timestamp of an event by
its z-coordinate in space. Figure 6 shows how the z-
axis is added. Now, reconceiving the nature of each
event in space, we can observe the following:

Observation 2 In space any event can be described
as a collision between a ray and a surface.

Such collisions can be computed using ray-shooting
techniques, but general methods for ray-shooting have
unsatisfactory time bounds and we still need to take
care of irrelevant events. The next section describes
how we can efficiently detect upcoming events.

5 Maintaining the next event

Since each event is a collision of a ray and a polygon
we can always determine the next event by maintain-
ing the closest pair between these two changing sets
of objects (polygons and rays).

5.1 The global prediction

Eppstein and Erickson [3] proposed a method of main-
taining the closest pair among two changing sets R
and B of objects according to a given distance mea-
sure d that can be computed in constant time. As a
prerequisite the sets R and B need to support mini-
mization queries, i.e. for any object b ∈ B an object
r ∈ R minimizing d(r, b) can be determined and vice
versa. In our application R and B will be the foot
points of rays and partially unbounded polygons, re-
spectively. We use the following result:

Theorem 3 ([3]) Suppose that after P (n) prepro-
cessing time, we can maintain a data structure of size
S(n) that supports insertions, deletions, and mini-
mization queries, each in amortized time T (n). Then
after O(P (n) + nT (n)) preprocessing time, we can
maintain the closest pair between R and B in O(S(n))
space, O(T (n) log(n)) amortized insertion time, and
O(T (n)log2(n)) amortized deletion time.

Note that we can neglect the linear preprocessing time
of the starting wavefront in our situation. Employing
this theorem we are left with the lesser problem of
efficiently performing both ray-shooting queries and
their inverse, called lowest-intersection queries. Let
us call the results of such queries local predictions and
the result of the above theorem the global prediction.
We now face the challenge of simplifying our data as
to speed up minimization queries while taking implicit
care of irrelevant events.

5.2 Simplification of wavefront data

The data we deal with for the purpose of local pre-
dictions comprises arbitrarily shaped, partially un-
bounded polygons in space. If we split these surfaces
at each event along the current wavefront as depicted
in Figure 7, we obtain slabs that are either triangles
or quadrilaterals. We distinguish four types of slabs
depending on the number of bounded edges and the
presence of parallel edges. As long as a slab has not
yet been involved in an event (except for the one that
created the slab) we call it active. Analogously we
define active rays. Inactive slabs can’t take part in a
relevant event. By Theorem 2 this augmentation of
VC(S) retains the linear complexity. We are now left
with answering minimization queries for a linear num-
ber of triangles and unbounded quadrilaterals. Note
that active slabs cover areas beyond the current wave-
front. The key observation is, that we do not need
to know exactly how far any slab has actually been
traced out by the wavefront at any given time. The
slabs have been designed to cover only those points
of the plane that they would cover in the finished di-
agram, if they are not made inactive prematurely by
some event involving them. The same holds for rays.

5.3 Orthogonalized sublocal queries

We now define slabs to be similar if their sides pair-
wise have the same angular position. For an example
see Figure 8. Rays are similar if they merely point in
the same direction and move at the same speed.

Lemma 4 The number of classes of similarity of
slabs and of rays is constant.

Let us now consider an arbitrary combination of one
class of slabs with one class of rays. We call the re-
sult of a minimization query involving all objects of
exactly these two classes a sublocal prediction. Since
by Lemma 4 the number of ray and slab classes is con-
stant, the number of pairs of ray and slab classes is
constant, too. Clearly, any local prediction can easily
be computed out of sublocal predictions in constant
time. Within a sublocal data structure considerable
simplifications are possible. For each such data struc-
ture we can define a coordinate transformation f con-

157

21st European Workshop on Computational Geometry, 2005

e1

ω

Figure 7: Division into
slabs (dashed lines).

x

y

z

s1

s2s3

s4

side
floor

Figure 8: Only slabs s1

and s2 are similar.

sisting of at most one rotation and four concatenated
shearings. First the rotation aligns the rays with the
z-axis and one side of the slabs with the x-axis. Then
step by step each side of the slabs is orthogonalized to
two of the three axes. As shown in Figure 9, we end
up with simple orthogonal range queries instead of
ray-shooting or lowest-intersection queries. Note that
in order to handle type-3 slabs (bounded triangles)
we need to introduce the additional Ψ-axis (see Fig-
ure 10), adding one more level to the data structure.

side

floor

x

y

z

ray rf

slab sf

Figure 9: A transformed
slab-ray pair.

x

y Ψ

Figure 10: The addi-
tional Ψ-axis.

5.4 Feeding the global prediction

As stated earlier the global prediction relies on lo-
cal predictions. Local predictions in turn are based
on a constant number of sublocal queries, each being
answered with a multidimensional orthogonal range
query. Making use of Theorem 2 and of well-known
results about multi level range trees and fractional
cascading we can state the following:

Observation 3 Sublocal data structures can each
handle insertions, deletions and queries in O(log3(c+
n) log log(c+n)) time usingO((c+n)log3(c+n)) space.
The same holds for local data structures.

Comparing slabs with rays we observe that while slabs
are static, rays are not and thus they cannot simply
be represented by their static foot points pfoot. In
order to do justice to the dynamic nature of rays we
should in fact regard the (moving) tip of the rays. But
instead of repeatedly advancing the tips of all rays we

can simply apply a time corrected insertion: pnew
foot :=

pfoot− (0, 0, t)|Nv|, with t being the elapsed time and Nv
being the direction of the ray. They key observation is
that these modified foot points represent at all times
the relative position of the tips of their rays, after the
transformation f has been applied.

5.5 Ignoring irrelevant events

While the statement of Observation 3 is crucial to
relevant events, we can show that due to the care-
ful design of our slabs we don’t need to add up any
time for irrelevant events. As indicated in Figure 5, a
redundant event is due to a wavefront vertex hitting
a segment with equal or lower speed than segments
hit by the same wavefront vertex earlier. If we sim-
ply refrain from forwarding local queries to sublocal
data structures designed for segments with equal or
lower speed, we implicitly ignore all redundant events.
Due to the fact that slabs comprise only points they
would actually reach if unhindered by events it is not
hard to see that no virtual event will ever be globally
predicted. Thus by Theorem 2 we get:

Lemma 5 The total number of globally predicted
events is O(c+ n).

6 Proof of main result

Now we can put things together to prove Theo-
rem 1. According to Lemma 5, O(c + n) events are
treated. Using Observation 3, Theorem 3 lets us pre-
dict each event in O(log5(c + n) log log(c + n)) time.
Hence, the total time used for the global prediction is
O((c+ n)log5(c+ n) log log(c+ n)), which dominates
the time needed to handle events (see Observation 1
and Lemma 5). Observation 3 and thus Theorem 3
require O((c+ n)log3(c+ n)) space.

References

[1] M. Abellanas, F. Hurtado, C. Icking, R. Klein,
E. Langetepe, L. Ma, B. Palop del Ŕıo, and
V. Sácristan. Proximity problems for time metrics
induced by the l1 metric and isothetic networks. In
Actas de los IX Encuentros de Geometŕıa Computa-
cional, pages 175–182, Universidad de Girona, 2001.

[2] O. Aichholzer, F. Aurenhammer, and B. Palop del
Ŕıo. Quickest paths, straight skeletons, and the City
Voronoi diagram. In Proc. 18th Symp. Computational
Geometry, pages 151–159. ACM Press, June 2002.

[3] D. Eppstein and J. G. Erickson. Raising roofs, crash-
ing cycles, and playing pool: Applications of a data
structure for finding pairwise interactions. Discrete
Computational Geometry, 22(4):569–592, June 1999.

[4] J. S. B. Mitchell, D. M. Mount, and C. H. Papadim-
itriou. The discrete geodesic problem. SIAM Journal
on Computing, 16(4):647–667, Aug. 1987.

158

