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Abstract

Given a set S of n points, we show that the length of
1) the minimum weight triangulation (MWT ) of the
minimum weight convex partition (MWCP ) of S
(TMWCP ) is at most Θ(n) longer than the MWT
of S if collinearity of two or more edges is allowed
and Θ(log n) otherwise,

2) the MWT of the minimum spanning tree (MST )
of theMWCP of S (Tmst(MWCP )) is at most Θ(n)
longer than theMWT of S if collinearity of two or
more edges is allowed and Θ(log n) otherwise,

3) the MWT of any connected subset G of the
MWCP of S (TMWCP (G)) is at most Θ(n) longer
than the MWT of S if collinearity of two or more
edges is allowed.

1 Introduction

A triangulation of a set S of n points in the plane
is a maximal set of non-intersecting edges connect-
ing the points in S. The minimum weight triangula-
tion MWT of S is a triangulation of minimum total
edge length. It is unknown whether the MWT prob-
lem is NP-complete or solvable in polynomial time [2].
However, since the MWT of a simple polygon can

be found in O(n3) time [3], it sounds reasonable to
approximate the MWT of a point set by first con-
necting the set of points into a single component (a
polygon). If the polygon is convex and no three ver-
tices are collinear, a triangulation of weight O(log n)
times the polygon’s perimeter can be found by the
ring heuristic of repeatedly connecting every second
vertex [8]. Using this heuristic and a complicated
method to partition the input into convex polygons,
it was shown in [9] that a triangulation of O(log n)
times the MWT length can be achieved.

Notation: We use the following abbreviations:
MWCP : minimum weight convex partition
TMWCP : MWT of the MWCP
mst(MWCP ): minimum spanning tree (MST )

of the MWCP
Tmst(MWCP ): MWT of mst(MWCP )
MWCP (G): a connected subset of the MWCP
TMWCP (G): MWT of the MWCP (G)
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New Results:
1) The length of the TMWCP of S is at most Θ(n)
greater than the MWT of S if collinearity of two
or more edges is allowed and Θ(log n) otherwise.

2) The length of the Tmst(MWCP ) of S is at most Θ(n)
greater than the MWT of S if collinearity of two
or more edges is allowed and Θ(log n) otherwise.

3) The length of the TMWCP (G) of S is at most Θ(n)
greater than the MWT of S if collinearity of two
or more edges is allowed.

2 Tight Bounds on TMWCP and MWT of S

Theorem 1 For any n ≥ 9, there is a set S of n
points in the plane, such that the TMWCP of S can
be Θ(n) longer than the MWT of S if collinearity of
three or more vertices is allowed.

Proof. For the lower bound we consider the set S of
n points in Figure 1. S is symmetric and compressed
w.r.t. the y-axis by a larger factor than shown in Fig-
ure 1 s.t. each diagonal between the convex hull pieces
from v7 to v∗ and from v∗+1 to vn is of length at most
1

n2 . The length of the diagonal connecting v3 to v4

is 1 and the length of the diagonals between (v1, v3),
(v2, v3), (v4, v5), (v4, v6) are 1

n . Consequently, the di-
agonals between (v3, v7), (v3, v∗+1), (v∗, v4), (v4, vn)
have a length of about 1

2 each for larger n.
The only single diagonal that can eliminate con-

cavity at v3 and v4 after the insertion of diagonals
between (v1, v3), (v2, v3), (v4, v5), (v4, v6) is the diag-
onal from v3 to v4. Let C be the convex hull piece
from v7 to v∗, and C ′ be the convex hull piece from
v∗+1 to vn. (C and C ′ are straight lines.) An alterna-
tive elimination of the concavity at v3 (resp. v4) after
the insertion of the diagonals (v1, v3), (v2, v3) (resp.
(v4, v5), (v4, v6)) is to insert two diagonals, one from
v3 (resp. v4) to a vertex on C, and the other from v3

(resp. v4) to a vertex on C ′.
An MWCP algorithm will always choose the di-

agonal between (v3, v4) of length 1 and the diagonals
between (v1, v3), (v2, v3), (v4, v5), (v4, v6), since they
give the minimum edge length convex partition. In-
cluding the convex hull CH of length about 2. This
the total length of this convex partition is approxi-
mately 3+ 4

n . Any alternative convex partition which
inserts two edges incident to v3 and to v4 results in
an edge length of (4± ε) + 4

n .
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Figure 1: An approximate illustration of the set of
points which shows the lower bound.
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vn Figure 2: Approximate illustra-
tion of an optimal triangulation
of area bounded by C and C ′.

The TMWCP of S includes the optimal triangu-
lation of the sub-polygon q containing the vertices
(v1, v3, v4, v5, v∗, . . . , v7) and its symmetric counter-
part q′ containing vertices (v2, v3, v4, v6, vn, . . . , v∗+1).
The sub-polygon q is triangulated by adding edges be-
tween v3 and vertices on C and/or edges between v4

and vertices on C. Each of these edges has a length of
approximately 1

2 . For larger n there are about
n
2 ver-

tices on C (there are at least 2n
9 vertices on C, since

n ≥ 9). Thus the total length of the edges needed to
triangulate q is 1

2 ·
n
2 =

n
4 , and since q

′ is symmetric
to q, the total length of the edges needed to triangu-
late both q and q′ is 2n

4 =
n
2 . Adding the total edge

length 3+ 4
n for the MWCP of S obtained above, we

have that the TMWCP of S has a total edge length of
approximately n

2 , for larger n.
The MWT of S, however, includes the diago-

nals between the convex hull CH, (v1, v3), (v2, v3),
(v4, v5), (v4, v6), (v3, v7), (v3, v∗+1), (v∗, v4), (v4, vn)
and diagonals going between C and C ′. The optimal
triangulation T of the area bounded by C and C ′ ap-
proaches zero for larger n, because each edge going
between C and C ′ in T has length at most 1

n2 and
there are O(n) edges (see Figure 2). The MWT of S
thus has a total edge length of about 4 for larger n.
Hence |TMWCP |

|MWT | ≈
n
8 .

For the upper bound, we draw on a result in [4],
where it was shown that for a point set S any trian-
gulation achieves a total edge length O(n) times the
MWT of P . Therefore the Θ(n) bound is tight. �

Theorem 2 For any n, there is a set S of n points in
the plane, such that the TMWCP of S can be Θ(log n)
longer than the MWT of S if collinearity of three or
more vertices is disallowed.

Proof. To show the lower bound, we modify the set S
of points in Figure 1 such that (1) on the convex hull
piece C from v7 to v∗ the vertices lie on a circular arc
so that no three vertices are collinear, likewise on the
convex hull piece C ′ from v∗+1 to vn; (2) each edge
between adjacent vertices on C and C ′ has length 1

n .
C and C ′ are both of length about 0.3; (3) the dis-
tance from each v on C (resp. C ′) to the closest vertex
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Figure 3: An approximate illustration of a point set
S of points showing the lower bound.

on C ′ (resp. C) is at most 1
n2 ; (4) the diagonals be-

tween (v3, v7), (v3, v∗+1), (v∗, v4), (v4, vn) have length
of about 0.35 each.
An MWCP algorithm always chooses the diagonal

between (v3, v4) of length 1 and the diagonals between
(v1, v3), (v1, v3), (v4, v5), (v4, v6), since they give the
minimum edge length convex partition (similar expla-
nation as in the proof of Theorem 1).
The TMWCP of S includes the triangulation

of the convex sub-polygon q containing vertices
(v1, v3, v4, v5, v∗, . . . , v7) and its symmetric counter-
part q′ containing vertices (v2, v3, v4, v6, vn, . . . , v∗+1).
From [5, 6] we know that the greedy triangulation1 of
a convex polygon P is an O(1) approximation of the
MWT of P . The greedy triangulation of theMWCP
of S adds the diagonals between (v7, v∗) and (v∗+1, vn)
before the diagonals (v3, v7) and (v3, v∗+1) (resp.
(v∗, v4) and (v4, vn)) in q (resp. q′). The sub-polygon
containing the circular arc C (resp. C ′) and the di-
agonal between (v∗, v7) (resp. (v∗+1, vn)) is referred
to as a semi-circular polygon in [7]. [7] showed that
the MWT of such semi-circular polygons has length
Θ(log n) times its perimeter. Thus the triangulations
of such resulting sub-polygons have length Θ(logn)
plus the length of the perimeters of the sub-polygons.
The length of theMWT of the two semi-circular poly-
gons of S is Θ(log n) (since the greedy triangulation
of P is O(1) of the MWT of P ). Thus the total edge
length of the TMWCP of S is Ω(log n).
A much shorter triangulation of S includes the diag-

onals between the vertices stated for theMWT in the
proof of Theorem 1, giving a total edge length of at
most O(1). Using results from [9, 8] it can be deduced
that given a set S (disallowing collinearity) partition-
ing the region of the plane enclosed by the CH of S
into convex polygons one can achieve an O(log n) ap-
proximation to theMWT by triangulating the convex
polygons. Therefore the Θ(logn) bound is tight. �

3 Tight Bounds on Tmst(MWCP ) and MWT of S

Theorem 3 For any n > 0, there exists a set S of
n points for which the length of the Tmst(MWCP ) of
S can be Θ(n) times the length of the MWT of P if
collinearity of three or more vertices is allowed.

1The greedy triangulation is obtained by repeatedly adding
the shortest edge that does not lead to an intersection.
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Figure 4: An approximate illustration showing the
lower bound for the Tmst(MWCP ) and MWT ratio.

Proof. Consider the set S of n ≥ 10 points in Fig-
ure 3 and let the distances between pairs of ver-
tices be d(v1, v2) = 1.2, d(v2, vn) = 1.2, d(v1, vn) =
2.4, d(v2, v4) = 1, d(v1, v3) = 2.3, d(v2, v3) > 1,
d(v3, v4) ≤ 1

n+2 , d(vn, v4) ≤ 1
n+1 , d(vn, v3) ≤ 1

n . We
observe that the MWCP includes the convex hull of
S and the edges (v1, v2), (v2, v4), since the total edge
length of this partition is minimum (concavity at v2

is removed, since v1, v2, v4 are collinear).
The mst(MWCP ) includes all edges in the

MWCP of S except (v1, vn) and (v1, v3). There are
at most n − 5 vertices between vn and v4, and each
(including vn) is connected to the vertex v2 by an edge
of length about 1.2 in the Tmst(MWCP ).
However, theMWT includes edges (v2, vn), (v2, v3)

and edges from v3 to each of the vertices from v5

and vn. Each of the n − 5 edges from v3 to vertices
(v5, v6, . . . , vn) has length at most 1

n . The total length
of the MWT of S is O(1). Thus the ratio of the
lengths of the Tmst(MWCP ) and the MWT is Ω(n).
This proves a lower bound for the above problem.
For the upper bound we know that every triangula-

tion has length O(n) times the optimum (MWT ) [4,
1]. Therefore the Θ(n) bound is tight. �

Theorem 4 For any n > 0, there exists a set S of
n points for which the length of the Tmst(MWCP ) of S
can be Θ(log n) times the length of the MWT of S if
collinearity of three or more vertices is disallowed.

Proof. We construct a set S of n points, n ≥ 15,
which is sketched in Figure 4. We assume that S
is compressed w.r.t. the y-axis s.t. the y-coordinate of
each point is multiplied by 1

n2 and S has the following
properties: (1) All vertices except v3 and vm+2 (which
lie on the x-axis) lie on the convex hull CH. (2) On
the CH the vertices vm+4, vm+5, . . . , vn lie on a cir-
cular arc. (3) Let δ(u, v) denote the vertical distance
between any two given vertices u and v, and d(u, v)
the distance between u and v. Then d(v1, v2) = 1

2n ,
d(v1, v3) = 2

n , δ(v3, vn) = 0.2, δ(vn, vm+4) = 0.1
δ(vm+4, vm+2) = 0.7, d(v3, vm+2) = δ(v3, vm+2) = 1
δ(vm+2, vm+3) > 1, d(vm+3, vm+1) = 2. The short-
est diagonal from any vertex on the convex hull piece
(vn, vm+4) to any vertex on the convex hull piece

(v4, vm) is no longer than 1. (4) Let L1 (see Figure 4)
be the half-line extension of vm+1 to vm+2 and L2

the half-line extension of vm+3 to vm+4. The vertices
vm+4 to vn lie above the intersection of L1 and L2.
In any convex partition of S: The two diagonals

(vm+2, vm+1) and (vm+2, vm+3) must both be present
to remove the concavity at vm+2, because even adding
all remaining diagonals incident to vm+2 does not re-
move the concavity at vm+2 (this follows from prop-
erty 4 above). To remove the concavity at v3, if the
diagonal (v3, vm+2) is added, at least two other diag-
onals incident to v3 are needed. However, if the diag-
onal (v3, vm+2) is not added, either (v1, v3) or (v2, v3)
together with at least two other diagonals are needed,
namely one incident to v3 and going to the left of v3

and one incident to v3 and going to the right of v3.
To find the MWCP of S, inserting the diagonal

(v3, vm+2) removes the concavity at vm+2 and requires
inserting either (v1, v3) and (v2, v3) to remove the con-
cavity at v3 giving a total edge length of 1 + 4

n . If we
do not, however, add the diagonal (v3, vm+2), a pos-
sible solution is the insertion of either (vm+2, vm+4)
or (vm+2, vm) at vm+2 and (vn, v3), (v3, v4) and either
(v1, v3) or (v2, v3) to remove the concavity at v3 giving
a total edge length of 0.7+0.2+0.2+ 2

n . We conclude
that the MWCP of S includes the convex hull of S
and edges (v1, v3), (v2, v3), (v3, vm+2), (vm+2, vm+3)
and (vm+2, vm+1).
An mst(MWCP ) of S includes the edges in the

MWCP of S with the exception of (vm+4, vm+3),
(vm, vm+1) and either (vm+2, vm+1) or (vm+2, vm+3).
The greedy triangulation of any mst(MWCP ) of S

includes the triangulation of the so-called semi-cir-
cular polygon [7] bounded by the convex hull piece C
from vn to vm+4 and the edge (vn, vm+4), as well as its
symmetric counterpart the convex hull piece C ′ from
v4 to vm and the edge (v4, vm). In [7] it was shown
that theMWT of such regular semi-circular polygons
has length Θ(log n) times its perimeter. Since the
greedy triangulation is an O(1) approximation of the
MWT for any convex polygon [5, 6], the total edge
length of the Tmsp of S must be also Ω(log n).
A shorter triangulation T of S includes the con-

vex hull of S, the edges (v1, v3), (v2, v3), (v3, v4),
(v3, vn), (vm+2, vm+4), (vm+2, vm), (vm+2, vm+4),
(vm+2, vm+1), and edges from the triangulation of the
area bounded by C, C ′, (v4, vn), (vm+4, vm) (see Fig-
ure 2 for a similar triangulation). In all there is a lin-
ear number of edges going between the area bounded
by edges (v4, vn), (vm+4, vm), C and C ′, each of which
has length at most O( 1

n2 ) giving a total edge length
of O( 1

n ). Thus the total edge length in T is O(1).
The set S considered above has an even number of

points. For the case when n is odd we add a dummy
vertex vd in the area bounded by the triangle with cor-
ners v1, v2, and v3 to maintain the symmetric nature
of S. The introduction of the dummy vertex gives the
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Figure 5: An sketch showing a modification of the
point set S in Figure 3. The point sets are symmetric
along the x-axis.The figure is not to scale.

same lower bound as shown for the even case since
the concavity at vd can be removed by inserting edges
from vd to v1, v2, and v3.
The Θ(log n) bound is tight. We can show this

by starting with polygonal regions formed by combin-
ing the convex hull with the MST of the point set,
and then computing the MWT of these regions us-
ing the ring heuristics proposed by Lingas [8]. The
ring heuristics achieves a O(log n) approximation to
the MWT of polygons. �

Generalization

Theorem 5 For any n, there exists a point set S for

which
|TMWCP (G)|
|MWT | = Ω(n).

Proof. We show that Theorem 5 holds by modifying
the point set S in Figure 3 to be symmetric w.r.t. the
y-axis: the point v2 lies on the y-axis, the points v3

to vn are at the same positions relative to v2, and
we add corresponding points v′3 to v

′
n at symmetric

positions (see Figure 5). Any connected subset G in
the MWCP of S includes either the edge (v′3, v2) or
(v2, v3). Any of these two edges prevents us from get-
ting triangulation edges having length of at most 1

n
as shown in the proof of Theorem 3. �

Observations

Definition 1 A vertex of a polygon is strictly con-
vex if its internal angle is strictly less than 180 de-
grees. Every vertex of a strictly convex polygon is also
strictly convex. Similarly every polygon of a strictly
convex partition is also strictly convex.

Observation 1 For the case where strictly convex
partitions are required, the Tmst(MWCP ) of S is of
length Θ(log n) times the length of the MWT of S
if collinearity of three or more vertices is allowed.
We can prove the Ω(log n) lower bound part of the
Θ(log n) bound using the same proof as for Theorem 4
(for the non collinear case), since a strictly convex
partition means a strictly convex polygon, collinear-
ity of three or more vertices is not allowed in the con-
vex polygons formed from the strictly convex parti-
tions. To show the O(log n) upper bound part of the
Θ(log n) bound, the ring heuristics [9] can be used to
optimally triangulate all the strictly convex polygons
derived from the strict MWCP of S.
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