
EWCG 2005, Eindhoven, March 9–11, 2005

The Visibility–Voronoi Complex and its Applications∗

Ron Wein† Jur P. van den Berg‡ Dan Halperin§

Abstract

We introduce a new type of diagram called the VV(c)-
diagram (the Visibility–Voronoi diagram for clearance
c), which is a hybrid between the visibility graph and
the Voronoi diagram of polygons in the plane. This di-
agram can be used for planning natural-looking paths
for a robot translating amidst polygonal obstacles in
the plane. We also propose an algorithm that is ca-
pable of preprocessing a scene of configuration-space
polygonal obstacles and constructs a data structure
called the VV-complex. The VV-complex can be used
to efficiently plan motion paths for any start and goal
configuration and any clearance value c, without hav-
ing to explicitly construct the VV(c)-diagram for that
c-value. We have implemented a Cgal-based soft-
ware package for computing the VV(c)-diagram in an
exact manner for a given clearance value, and used it
to plan natural-looking paths in various applications.

1 Introduction

We study the problem of planning a natural-looking
collision-free path for a robot with two degrees of mo-
tion freedom moving in the plane among polygonal
obstacles. By “natural-looking” we mean that (a) the
path should be short — that is, it should not con-
tain long detours when significantly shorter routes are
possible; (b) it should have a guaranteed amount of
clearance — that is, the distance of any point on the
path to the closest obstacle should not be lower than
some prescribed value; and (c) it should be smooth,
not containing any sharp turns. Requirements (b)
and (c) may conflict with requirement (a) in case it
is possible to considerably shorten the path by taking
shortcuts through narrow passages. In such cases we
may prefer a path with less clearance (and perhaps
containing sharp turns).
The visibility graph [2, Chap. 15] is a well-known

data structure for computing the shortest collision-
free path between a start and a goal configuration.
However, shortest paths are in general tangent to ob-
stacles, so a path computed from a visibility graph

∗This work has been supported in part by the IST Programme of the
EU as Shared-cost RTD (FET Open) Project under Contract No IST-2001-
39250 (MOVIE — Motion Planning in Virtual Environments), by The Israel
Science Foundation founded by the Israel Academy of Sciences and Humanities
(Center for Geometric Computing and its Applications), and by the Hermann
Minkowski–Minerva Center for Geometry at Tel Aviv University.

†Tel-Aviv University, wein@tau.ac.il
‡Utrecht University, berg@cs.uu.nl
§Tel-Aviv University, danha@tau.ac.il

P1

P2

P3 P4

Figure 1: The VV(c)-diagram for four convex obstacles
located in a rectangular room. The boundary of the union
of the dilated obstacles is drawn in a solid line, the relevant
portion of the Voronoi diagram is dotted. The visibility
edges are drawn using a dashed line.

usually contains semi-free configurations and there-
fore does not have any clearance. This not only looks
unnatural, it is also unacceptable for many motion-
planning applications. On the other hand, planning
motion paths using the Voronoi diagram of the ob-
stacles [4] yields a path with maximal clearance, but
this path may be significantly longer than the shortest
path possible, and may also contain sharp turns.
We suggest a hybrid of these two approaches,

called the VV(c)-diagram (the Visibility–Voronoi dia-
gram for clearance c), yielding natural-looking motion
paths, meeting all three criteria mentioned above. It
evolves from the visibility graph to the Voronoi dia-
gram as c grows from 0 to∞, where c is the preferred
amount of clearance. Beside the straightforward algo-
rithm for constructing the VV(c)-diagram for a given
clearance value c, we also propose an algorithm for
preprocessing a scene of configuration-space polygo-
nal obstacles and constructing a data structure called
the VV-complex. The VV-complex can be used to
efficiently plan motion paths for any start and goal
configuration and any given clearance value c, with-
out having to explicitly construct the VV(c)-diagram
for that c-value.

2 The VV(c)-Diagram

Let P = {P1, . . . , Pm} be a set of pairwise interior-
disjoint polygons having n vertices in total, rep-
resenting two-dimensional configuration-space obsta-

151



21st European Workshop on Computational Geometry, 2005

cles. Given a start configuration, a goal configura-
tion and a preferred clearance value c > 0, we wish to
find a shortest path between the query configurations,
keeping a clearance of at least c from the obstacles
where possible, but allowing to get closer to the ob-
stacles in narrow passages when it is possible to make
considerable shortcuts.
We begin by dilating each obstacle by c, by com-

puting the Minkowski sum of each polygon with a disc
of radius c. The visibility graph of the dilated obsta-
cles contains all shortest paths with a clearance of at
least c from the obstacles. Moreover, as each con-
vex polygon vertex becomes a circular arc of radius c,
the valid visibility edges are bitangents to two circular
arcs (note that the dilated polygon edges are also valid
visibility edges). This guarantees that a shortest path
extracted from such a visibility graph is C1-smooth,
containing no sharp turns. The only disadvantage in
this approach is that narrow, yet collision-free, pas-
sages can be blocked when we dilate the obstacles (for
example, in Figure 1 there exists such a narrow pas-
sage between P1 and P3). It is clearly not possible
to pass in such passages with a clearance of at least
c, but we still wish to allow a path with the maxi-
mal clearance possible in this region. To do this, we
compute the portions of the free configuration space
that are contained in at least two dilated obstacles,
and add their intersection with the Voronoi diagram
of the original polygons to our diagram. The relevant
portions of the Voronoi diagram are connected to the
reflex vertices in the union of the dilated boundaries,
which we refer to as chain points. The resulting struc-
ture is called the VV(c)-diagram, and it is easy to show
that it can be constructed in O(n2 log n) time.
In case our polygons are not convex, we decompose

them to obtain a set of convex polygons and com-
pute the boundary of the dilated obstacles for this set.
Note that not every reflex vertex of the boundary is
now a chain point, as it can also be induced by a reflex
vertex of the original polygon. Such reflex vertices are
not taken into account in the VV(c)-diagram.
Given a start and a goal configuration we just have

to connect them to our VV(c)-diagram and compute
the shortest path between them using Dijkstra’s algo-
rithm. To this end, we have to associate a weight with
each diagram edge. The weight of a visibility edge can
simply be equal to its length, while for Voronoi edges
we may add some penalty to the edge length, taking
into account its clearance value, which is below the
preferred c-value. It should be noted that if a path
contains a portion of the Voronoi diagram it may not
be smooth any more. This is however acceptable, as
we consider making sharp turns inside narrow pas-
sages to be natural.
We have implemented an extension package of

Cgal [1] that robustly computes the VV(c)-diagram
of a set of rational polygons, utilizing — among other

Cgal packages — the segment Voronoi diagram pack-
age by Karavelas [3]. As we wish to obtain an exact
representation of the VV(c)-diagram, we may spend
some time on the diagram construction, especially if
it contains chain points, which are algebraically more
difficult to handle. For example, the construction of
the VV(c)-diagram depicted in Figure 1 takes about 10
seconds (running a Pentium IV 2 GHz machine with
512 MB of RAM). However, once the VV(c)-diagram
is constructed, it is possible to use a floating-point
approximation of the edge lengths to speed up the
time needed for answering motion-planning queries,
so that the average query time is only a few millisec-
onds.

3 The VV-Complex

The construction of the VV(c)-diagram for a given
c-value is straightforward, yet it requires some non-
trivial geometric and algebraic operations that should
be computed in a robust manner — see the full ver-
sion of this paper [5] for the details. Moreover, if
we wish to plan motion paths for different c-values
and select the best one (according to some criterion),
we must construct the VV(c)-diagram for each c-value
from scratch. In this section we explain how to effi-
ciently preprocess an input set of polygonal obsta-
cles and construct a data structure called the VV-
complex, which can be queried to produce a natural-
looking path for every start and goal configuration
and for any preferred clearance value c.
Let us examine what happens to the VV(c)-diagram

as c continuously changes from zero to infinity. For
simplicity, we consider only convex obstacles in this
section. As we mentioned before, VV(0) is the vis-
ibility graph of the original obstacles, while VV(∞)

is their Voronoi diagram, so as c grows visibility
edges disappear from VV(c) and make way to Voronoi
chains. We start with a set of visibility edges contain-
ing all pairs of the polygonal obstacle vertices that
are mutually visible, regardless whether these edges
are bitangents of the obstacles.1 We also include the
original obstacle edges in this set, and treat them as
visibility edges between two neighboring polygon ver-
tices. Furthermore, we treat our visibility edges as
directed, such that if the vertex u “sees” the vertex v,
we will have two directed visibility edges Nuv and Nvu.
As c grows larger than zero, each of the original vis-

ibility edges potentially spawns as many as four bitan-
gent visibility edges. These edges are the bitangents
to the circles Bc(u) and Bc(v) (where Br(p) denotes
a circle centered at p whose radius is r) that we name
Nuvll, Nuvlr, Nuvrl and Nuvrr, according to the relative po-
sition (left or right) of the bitangent with respect to
u and to v (see Figure 2(a)). The two bitangents Nuvll

1Visibility edges are only valid when they are bitangents,
otherwise they do not contribute to shortest paths in the visibil-
ity graph. However, as c grows larger these edges may become
bitangents, so we need them in our data structure.

152



EWCG 2005, Eindhoven, March 9–11, 2005

u

v

c

:uvll

:uvrl
:uvrr

:uvlr

v

w

u

:uvll

:uwlr

u

v

w

:uwrl

:uvrl

(a) (b) (c)

Figure 2: (a) The four possible bitangents to the circles Bc(u) and Bc(v) of radius c centered at two obstacle vertices u
and v. Notice that in this specific scenario only the bitangent uvrl is a valid visibility edge.
Visibility events involving u, v and w: (b) The dilated vertex w blocks the visibility of u and v. (c) As uwrl becomes
equally sloped with uvrl (where vw is an obstacle edge), it becomes a valid visibility edge.

and Nuvrr retain the same slope, while the slopes of the
other two bitangents change for increasing c-values.
Note that for a given c-value, it is impossible that

all four edges are valid. Our goal is to compute a
validity range R(e) = [cmin(e), cmax(e)] for each edge
e, such that e is part of the VV(c)-diagram for each
c ∈ R(e). These validity ranges will be stored in an
interval tree, so it is easy to obtain all valid edges for
any given c-value. If an edge is valid, then it must
be tangent to both circular arcs associated with its
end-vertices. There are several reasons for an edge to
change its validity status: (a) The tangency point of e
to either Bc(u) or to Bc(v) leaves one of the respective
circular arcs; (b) The tangency point of e to either
Bc(u) or to Bc(v) enters one of the respective circular
arcs; (c) The visibility edge becomes blocked by the
interior of a dilated obstacle.
The important observation is that at the moment

that a visibility edge Nuv gets blocked, it becomes tan-
gent to another dilated obstacle vertex w, so essen-
tially one of the edges associated with Nuv becomes
equally sloped with one of the edges associated with
Nuw (see Figure 2(b)). The first two cases mentioned
above can be realized as events of the same nature, as
they occur when one of the Nuv edges becomes equally
sloped with Nuwlr (or Nuwrl), when v and w are neigh-
boring vertices in a polygonal obstacle — see Fig-
ure 2(c).
This observation stands at the basis of the algo-

rithm we devise for constructing the VV-complex: We
sweep through increasing c-values, stopping at criti-
cal visibility events, which occur when two edges be-
come equally sloped. We note that the edge Nuvll (or
Nuvlr) can only have events with arcs of the form Nuwll

or Nuwlr, while the edge Nuvrl (or Nuvrr) can only have
events with arcs of the form Nuwrl or Nuwrr. Hence,
we associate two circular lists Ll(u) and Lr(u) of the
left and right edges of the vertex u, respectively, both
sorted by the slopes of the edges. Two edges partici-
pate in an event at some c-value only if they are neigh-
bors in the list for infinitesimally smaller c. At these
event points, we should update the validity range of

the edges involved, and also update the adjacencies in
their appropriate lists, resulting in new events.
As mentioned in Section 2, an endpoint of a visi-

bility edge in the VV(c)-diagram may also be a chain
point, so we must consider chain points in our algo-
rithm as well. We therefore compute the Voronoi di-
agram of the polygonal obstacles, which is comprised
of Voronoi chains that separate between neighboring
Voronoi cells. The chains are sequences of Voronoi
arcs, which are either line segments or circular arcs,
and their endpoints are called Voronoi vertices. As a
Voronoi chain is either monotone or has a single point
with minimal clearance, we can associate at most two
chain points with every Voronoi chain. Our algorithm
will also have to compute the validity range for edges
connecting a chain point with a dilated vertex or with
another chain point. For that purpose, we will have
a list L(p) of the outgoing edges of each chain point
p, sorted by their slopes (notice that we do not have
to separate the “left” edges from the “right” edges in
this case).

3.1 The Preprocessing Stage

Given an input set P1, . . . , Pm of polygonal obstacles
as described above, we start by computing their visi-
bility graph and classifying the visibility edges as valid
(bitangent) or invalid. We examine each bitangent
visibility edge uv: For an infinitesimally small c only
one of the four Nuv edges it spawns is valid — we assign
0 to be the minimal value of the validity range of this
edge (and of the opposite Nvu edge). As our algorithm
is event-driven, we initialize an empty event queue Q,
storing events by their increasing c-order. For each
obstacle vertex u we construct Ll(u) and Lr(u), based
on the visibility edges we have just computed, and ex-
amine each pair of adjacent edges e1, e2 in Ll(u) and
in Lr(u). We compute the c-value at which the ad-
jacent e1 and e2 become equally sloped, if one exists,
and insert the visibility event 〈c, e1, e2〉 to Q. We also
compute the Voronoi diagram of the polygonal ob-
stacles, and for each non-monotone Voronoi chain we

153



21st European Workshop on Computational Geometry, 2005

locate the arc a that contains the minimal clearance
value cmin of the chain in its interior and insert the
chain event 〈cmin, a〉 to Q.
After this initialization step, we proceed to the

event-handling step: While the event queue is not
empty, we proceed by extracting the event in the front
of Q, associated with minimal c-value, and handle it
according to its type.
Visibility events always come in pairs — that is,

if Nuv becomes equally sloped with Nuw, we will either
have an event for the opposite edges Nvu and Nvw, or
for the opposite edges Nwu and Nwv. We therefore han-
dle a pair of visibility events as a single event. Let
us assume that the edges Nuv and Nuw become equally
sloped for a clearance value c′, and at the same time
the edges Nvu and Nvw become equally sloped (see Fig-
ure 2(b) and (c)). As the edges Nuv and Nvu now be-
come blocked, we assign c′ to be the maximal c-value
of the validity range of Nuv and Nvu. We also remove the
other event involving Nuv (based on its other adjacency
in L(u)) from Q, and delete this edge from L(u). We
examine the new adjacency created in L(u) and insert
its visibility event into the event queue Q. We repeat
this procedure for the opposite edge Nvu. If the edge Nuv
was valid before it was deleted and the edges Nuw and
Nvw do not have a minimal validity value yet, assign c′

to it, because these edges have become bitangent for
this c-value (see Figure 2(c) for an illustration).
A chain event occurs when the value c equals the

minimal clearance of a Voronoi chain χa, obtained on
the arc a, which is equidistant from an obstacle vertex
u and another obstacle feature. Let z1 and z2 be a’s
endpoints. We initiate two chain points p1(χa) and
p2(χa) associated with the Voronoi chain χa. As c
grows, p1(χa) moves toward z1 and p2(χa) moves to-
ward z2. For all edges e incident to u, we compute
the c-value c′ for which e becomes incident to one of
the chain points pi(χa), and insert a tangency event
associated with c′ and e to the event queue. If a is
equidistant from u and from another obstacle vertex
v, we do the same for the edges incident to v. We
also insert two endpoint events to the queue, associ-
ated with the clearance values obtained at z1 and z2,
respectively.
When dealing with a chain event, we introduced

two additional types of events: tangency events and
endpoint events. A tangency event occurs when an
edge e = Nux (the endpoint x may either represent
a dilated vertex or a chain point) becomes tangent
to Bc(u) at a chain point p(χa) associated with the
Voronoi arc a, so we have to replace e by Np(χa)x as-
sociated with the chain point p(χa) and update the
relevant adjacency lists and the priority queue accord-
ingly. An endpoint event occurs when a chain point
p(χa) reaches the endpoint z of the Voronoi arc a —
in this case the edges associated with p(χa) should be
transferred to the next arc in the chain (or possibly

to the next chain, if z is a Voronoi vertex). We skip
the fine technical details involved in handling these
events, which can be found in the full version of this
paper [5]. The total number of events is O(n2) and
the time complexity of the algorithm is O(n2 log n).
A proof of correctness is provided in [5] as well.

3.2 The Query Stage

A query on the VV-complex is defined by a triple
〈s, g, ĉ〉, where s and g are the start and goal configu-
rations, respectively, and ĉ is the preferred clearance
value. We assume that s and g themselves have a
clearance larger than ĉ. Given a query, we start by
computing the relevant portion of the Voronoi dia-
gram: For each Voronoi chain we examine the clear-
ance values of its end-vertices, as well as the chain
minimum, and determine which portion of the chain
(if at all) we should consider. This way we also obtain
all the chain points for the given c-value ĉ.
Next we need to find the incident edges of s and g.

This means that we should obtain two lists L(s) and
L(g) containing the visibility edges emanating from s
and g (respectively) to every visible circular arc and
chain point. This is done using a radial sweep-line
algorithm. We now start searching the graph we have
implicitly constructed using a Dijkstra-like search to
find the “shortest” path between s and g. Whenever
we reach a vertex (a dilated polygon vertex or a chain
point) we query the VV-complex with the given c-
value ĉ to obtain a list of its valid incident edges, and
add g to this list if necessary. We proceed until the
goal configuration g is reached.
The query time is dominated by the running time of

Dijkstra’s algorithm, which is O(n log n+ k), where k
is the number of edges encountered during the search.
In practice, Dijkstra’s algorithm turns out to be very
fast, because hardly any geometric operations have to
be performed anymore and we can therefore switch to
machine-precision floating-point arithmetic.

References

[1] The Cgal project homepage. www.cgal.org/.

[2] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algo-
rithms and Applications. Springer-Verlag, 2nd edition,
2000.

[3] M. I. Karavelas. Segment Voronoi diagrams in Cgal,
2004. www.cgal.org/UserWorkshop/2004/svd.pdf.

[4] C. Ó’Dúnlaing and C. K. Yap. A “retraction” method
for planning the motion of a disk. J. Algorithms,
6:104–111, 1985.

[5] R. Wein, J. P. van den Berg, and D. Halperin. The
Visibility–Voronoi complex and its applications, 2004.
www.cs.tau.ac.il/∼wein/publications/pdfs/vvc TR.pdf.

154




