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Algebraic Study of the Apollonius Circle of Three Ellipses
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Abstract

We study the external tritangent Apollonius (or
Voronoi) circle to three ellipses. This problem arises
when one wishes to compute the Apollonius (or
Voronoi) diagram of a set of ellipses, but is also of
independent interest in enumerative geometry. This
paper is restricted to non-intersecting ellipses, but the
extension to arbitrary ellipses is possible.
We propose an efficient representation of the dis-

tance between a point and an ellipse by considering a
parametric circle tangent to an ellipse. The distance
of its center to the ellipse is expressed by requiring
that their characteristic polynomial have at least one
multiple real root. We study the complexity of the
tritangent Apollonius circle problem, using the above
representation for the distance, as well as sparse (or
toric) elimination. We offer the first nontrivial upper
bound on the number of tritangent circles, namely
184.

Keywords: Voronoi diagram, ellipse, mixed volume,
Euclidean distance, resultant.

1 Introduction

Voronoi diagrams are interesting constructs with nu-
merous applications and have been studied exten-
sively. However, the bulk of the existing work in
the plane concerns point-sites or linear sites such as
segments and polygons. More recently, some works
have extended Apollonius (or Voronoi) diagrams to
the case of circles, e.g. [8]. For the latter problem,
the implementation of [3] is now part of the CGAL
library. Recent works derive (semi-)algebraic condi-
tions for characterizing the relative position of conics
in the plane or certain quadrics in space, e.g. [12], [5].
Our ultimate goal is to compute efficiently and ex-

actly the Apollonius (or Voronoi) diagram of arbi-
trary sets of ellipses in the plane, under the Euclidean
metric. We assume that the ellipses are given alge-
braically, or implicitly. This is clearly a harder prob-
lem than the diagram of circles or the visibility map
among ellipses, hence the need for higher degree al-
gebraic operations. As a first step, this paper stud-
ies the case of non-intersecting ellipses, although our
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methods readily extend to arbitrary inputs.
The algorithms for the Apollonius diagram of el-

lipses typically use the following 2 main predicates.
Further predicates are examined in [4].

(1) given two ellipses and a point outside of both,
decide which is the ellipse closest to the point,
under the Euclidean metric

(2) given 4 ellipses, decide the relative position of the
fourth one with respect to the external tritangent
Apollonius circle of the first three

For predicate (1) we consider a circle, centered at the
point, with unknown radius, which corresponds to the
distance to be compared. A tangency point between
the circle and the ellipse exists iff the discriminant
of the corresponding pencil’s determinant vanishes.
Hence we arrive at a method using algebraic numbers
of degree 4, which is optimal. Note that we avoid
expressing the coordinates of the tangency point.
Let us focus on predicate (2). In the case of 3 disks,

the number of tritangent circles is 8 and the corre-
sponding predicate is of algebraic degree 2 [3]. This
problem is also known as The circle of Apollonius, be-
cause it was first addressed by Apollonius of Perga, in
about 250 BC. While this has been known since antiq-
uity, the generalization to ellipses is yet to be solved
efficiently.
Even the number of tritangent circles to 3 ellipses

is not known. The problem involves equations of high
degree and obtaining an exact solution is nontrivial.
[10] attempts to deal with this problem, but exact
computation with the proposed method is not com-
pleted and the author reverts to numerical methods.
No bounds on the complexity are given, nor on the
number of tritangent circles.
We apply the method from predicate (1) and re-

cent advances in sparse (or toric) resultants in order
to project all common roots to those of a univariate
equation. This leads to the first interesting bound on
the number of tritangent circles, namely 184. Mixed
volume also gives this bound as does a real algebraic
geometry argument [11].
The paper is organized as follows. The next section

introduces some of the ellipse’s properties. In section
3 we describe an efficient representation for the Eu-
clidean distance between a point and an ellipse and
we apply this idea to predicate (1). Finally, section 4
deals directly with the external tritangent Apollonius
circle and predicate (2).
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2 The geometry of an ellipse

An ellipse is the locus of points in the plane the sum
of whose distances from the foci is 2α > 0. The foci
lie at distance 2γ. The length of the major and minor
axes are 2α, 2β, resp. where β2 = α2−γ2. Let (xc, yc)
be its center and u the angle between the major and
the x axes. When xc = yc = u = 0 the ellipse is in or-
thogonal position, otherwise, it is in generic position.
The ellipse is a conic section with equation:

E(x, y) := ax2 + 2bxy + cy2 + 2dx+ 2ey + f, (1)

where J2 > 0 %= ac and J2 is defined below. The
ellipse’s parameters (a, b, c, d, e, f) are related to its
center, rotation, axes and focal distance, but we omit
the corresponding equations. The following quantities
are invariants under rotation and translation:

J1 = a+c = α2+β2 > 0, J2 =
∣∣∣∣ a b
b c

∣∣∣∣ = α2β2 > 0,

J3 =

∣∣∣∣∣∣
a b d
b c e
d e f

∣∣∣∣∣∣ = −J2
2 < 0.

The following quantity is invariant under rotation; its
expression uses the lemma below.

J4 = (a+ c)f − d2 − e2 = J2(x2
c + y

2
c − J1).

Let Ly, Lx be the lines connecting the leftmost and
rightmost points, and the highest with the lowest
point, respectively.

Lemma 1 Consider an ellipse of the form (1). Its
center is rational and coincides with the intersection
of Lx, Ly, where xc = (be−dc)/J2, yc = (bd−ae)/J2.

Given a point V outside an ellipse, how many nor-
mals are there to the ellipse? Let us count normal
segments, defined as the segment of a line normal to
the ellipse at some point Q; the segment’s endpoints
are Q,V . The boundary of the regions where the
number of normals changes is the evolute, which is
a stretched astroid (see figure 1). For an ellipse in
orthogonal position, each point (x, y) on the evolute
satisfies: (αx)

2
3 + (βy)

2
3 = γ

4
3 .

Proposition 2 There are 4, 3 or 2 normals of a point
to an ellipse, depending on whether the point lies in-
side the evolute, lies on the evolute but not at a cusp
or, respectively, the point is a cusp or outside the evo-
lute.

This yields a lower bound on the algebraic complex-
ity of computing the distance of an external point to
the ellipse, since any condition on the unknown dis-
tance has degree ≥ 4.

V

Figure 1: Left: an example of a point with 4 normals.
Right: the evolute of an ellipse.

3 Distance between point and ellipse

Consider an ellipse E and a point V = (v1, v2) out-
side E. Let C be a circle centered at V with radius
equal to

√
s, for a real s > 0. We shall express the

Euclidean distance δ(V,E) between V and E by the
smallest positive value of

√
s for which C is tangent to

E. In comparing distances, it is sufficient to consider
squared distance s.
It would be possible to find all tangency points by

solving the system:

E(x, y) = det[∇E(x, y), (x, y)− V ] = 0, (2)

and then choosing the appropriate solution, where the
2nd equation constraints the vector (x, y) − V to be
normal to E at (x, y). Consider system (2) with an
additional equation: ‖(x, y)−V ‖2 = s. The resultant
of the 3 polynomials with respect to x, y is precisely
polynomial ∆(v1, v2, s) to be defined below by an al-
ternative manner. It is the algebraic representation
of the offset curve to E at distance s.
Our goal is to avoid explicit computation of the

tangency points by requiring that system E = C = 0
have a multiple root. To arrive at a simple poly-
nomial we apply the theory of characteristic poly-
nomials and pencils [9, 12]. Let us express a conic
as [x, y, 1]M [x, y, 1]T , for an appropriate matrix M .
Then E,C correspond to

A =

 a b d
b c e
d e f

 , B =
 1 0 −v1

0 1 −v2

−v1 −v2 v2
1 + v

2
2 − s


The pencil of E and C is λA + B, and their charac-
teristic polynomial is

φ(λ) = |λA+B| = J2
2λ

3 + c2λ2 + c1λ+ s,
c2(s) = J2s− T (v1, v2),
c1(s) = J1s− E(v1, v2),

T (v1, v2) = J2[(v1 − xc)2 + (v2 − yc)2 − J1].
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The discriminant ∆(s) of φ(λ) is of degree 4:

∆(s) = J2
2 (J

2
1 − 4J2) s4 +

2J2(9J1J
2
2 − J2

1T + 6J2T − 2J3
1J2 − J1J2E) s3 +

+(−18J3
2E + 4J1J2ET − 27J4

2 + J
2
1T

2 −
−18J1J

2
2T + J

2
2E

2 + 12J2
1J

2
2E − 12J2T

2) s2 +
2(2T 3 − J1ET

2 − 6J1J
2
2E

2 + 9J2
2ET − J2E

2T ) s
+E2(T 2 + 4J2

2E).

The relative position of a circle and an ellipse falls into
one of 9 cases, related to the multiplicity and signs of
the real roots of φ(λ) [12, thm.8]. When φ(λ) has at
least one multiple root, the ellipse and the circle have
at least one tangency point. Note that φ(λ) has at
least one negative root because the product of roots
equals −s < 0.
By picking the smallest positive root of ∆(s) = 0,

we assure that φ(λ) has at least one root with multi-
plicity greater than one. Assume that the circle cen-
tered at V grows until it touches E (and then it might
continue to grow until it fully contains E). Since V
is outside E, the smallest positive root of ∆(s) corre-
sponds to δ(V,E).

Proposition 3 Given an ellipse E and a point V out-
side E, δ(V,E) is the square-root of the smallest posi-
tive zero of ∆(s); the latter is a univariate polynomial
of degree 4. The degree of the coefficients of ∆(s) is
6, 8, 10, 12, and 14, in order of decreasing power in
s, in v1, v2 and the parameters of E. In case (v1, v2)
is the center of another ellipse E′ the degree of the
coefficients of ∆(s) is exactly 22 in the parameters of
E,E′.

Corollary 4 Given ellipses E1, E2 and point V out-
side both of them, we can decide which ellipse is clos-
est to V by comparing two algebraic numbers of de-
gree 4. The previous section implies that this degree
is optimal.

4 External tritangent circle

Given 3 ellipses in the form of equation (1) we want
to find an external tritangent circle, as shown in fig.
2. Eventually, we are interested in deciding on the
relative position of a fourth ellipse and the circle. An
important open question is: what is the maximum
number of real tritangent circles to 3 ellipses? Given
the discussion in section 2, we expect that there are
at least 43 = 64 such circles.
Let
√
s be the radius of the tritangent circle and

(v1, v2) its center. Using the discriminant as above
for each of the 3 ellipses, we get

∆1(v1, v2, s) = ∆2(v1, v2, s) = ∆3(v1, v2, s) = 0. (3)

V

Figure 2: Tritangent circles to 3 ellipses; only one is
externally tangent

Among the solutions of this system, the external
tritangent circle of interest may or may not have the
smallest radius; cf. the respective cases in figure 2.
We apply sparse (or toric) elimination theory, using

the properties of the resultant and the mixed volume.
Given a system of n+1 polynomials fi in n variables,
with coefficients cij , the resultant of these polynomials
is a new polynomial R ∈ Z[cij ] such that when cij
are specialized, R = 0 ⇐⇒ ∃a : ∀i fi(a) = 0. If
the roots a lie in a projective (resp. toric) variety,
then we refer to the projective (resp. toric) resultant.
Given n polynomials in n variables, the mixed volume
of this polynomial system is a function of the support
(Newton polytope) of each polynomial. The mixed
volume provides an upper bound on the roots of the
system in (C∗)n. For more information see [2].
Each ∆i is of total degree 8 in v1, v2, s and 4 in s.

The mixed volume of system (3) is 256, which is too
high. It is known that this bound may not be tight,
as it may count complex roots and roots at “infinity”.
Indeed, it is possible to reduce the mixed volume of

the above system, in order to obtain a better upper
bound. We set

q := v2
1 + v

2
2 − s (4)

In this case, the matrix B defined in the previous
section, contains only linear terms with respect to
v1, v2, q. The discriminant of the characteristic poly-
nomial is of total degree 6 in v1, v2, q and 4 in q; the
coefficients of 1, q, q2, q3, q4 are polynomials in v1, v2

of degree 6,5,4,2,1 respectively. The corresponding
system has mixed volume 184. Note that solving for
v1, v2, s requires the use of equation (4). The mixed
volume of the system of ∆i with this additional equa-
tion, with respect to v1, v2, s, q, is still 184.
Recent advances in matrix formulae for the resul-

tant allow us to compute the resultant of certain sys-
tems of 3 bivariate polynomials as a single determi-
nant. One class of such systems are those with iden-
tical supports [7]. The corresponding matrix is of hy-
brid type, i.e., it contains blocks of Sylvester and of
Bézout type. The matrix construction has been im-
plemented in Maple by A. Khetan. Our system (3)
falls in this class, considered with variables v1, v2, af-
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ter hiding q in the coefficients. Its resultant is a poly-
nomial in q and equals, generically, the determinant
of a 58× 58 matrix. We denote this matrix by K.
To get an idea of the quantities involved, we have

studied a specific example of three ellipses, in random
position as in the left-hand side figure 2. The input
parameters are signed 10-bit integers. The elements
of K are either 0 or polynomials in q of degree 0–10.
The computation of the determinant of K is done by
interpolation. The determinant of K is a polynomial
in q, which we denote by d(q). By substituting differ-
ent values of q into K we eliminate all indeterminates
making the computation of the determinant a trivial
task. By making 200 such replacements (in fact, 185
suffice) we obtain 200 pairs of 〈q, d(q)〉. It turns out
that there is a unique interpolating polynomial of de-
gree 184 in q through these values which is exactly
the resultant of our example. Hence, in this example
the number of complex solutions matches the upper
bound given by the mixed volume.

The coefficients of this resultant are, on average,
1385-digit (4603-bit) integers. We ’ve not yet man-
aged to solve this resultant efficiently and exactly.
However, as a preliminary approach we have applied
the Aberth method (implemented in [1]) to solve the
polynomial numerically. This algorithm yielded 8 real
roots in less than a second.

According to [11], there are 184 complex circles in
the worst case that are tangent to 3 given conics in
the plane. The idea is to consider a manifold (space
of complete conics) whose cohomology ring ([6]) has
two generators:

p := a conic contains a fixed, but general point
l := a conic is tangent to a fixed, but general line

In this ring, conjunction of conditions is multiplica-
tion, and every degree-5 monomial is associated to
an integer. For example p4l 0→ 2 meaning that there
are 2 conics through 4 points and tangent to a line.
The condition of tangency to a conic is 2(p + l) and
a circle contains the two circulars points at infinity
(x1 : x2 : x0) = (i : ±1 : 0). Thus the expression
p2[2(p+ l)]3 maps to 184 which means that there are
at most 184 complex circles tangent to 3 conics in the
plane. An open question is how many of these circles
can be real.

The above computation of the mixed volume, the
resultant, and the upper bound give strong indica-
tion that the system (3) modified with (4) is opti-
mal. Methods on how to solve system (3) efficiently
will be addressed in a future work. In such an ap-
proach, one might consider semi-algebraic constraints
such as those in [4], in order to prune cases in some
subdivision-based algorithm.
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