
EWCG 2005, Eindhoven, March 9–11, 2005

Ternary Blending Operations

Galina Pasko∗, Alexander Pasko†, Tosiyasu L. Kunii‡

Abstract

We discuss new analytical formulations for localized
and controllable blending operations in the function-
based solid modeling. The blending set operations
are defined using R-functions and displacement func-
tions with the localized area of influence. The shape
and location of the blend are controlled by an ad-
ditional bounding solid thus turning the operation
into a ternary one. We also describe a new approach
to solving the problem of shape metamorphosis be-
tween k-dimensional shapes by applying space-time
bounded blending to the specially constructed (k+1)-
dimensional half-cylinders and making cross-sections
for getting intermediate shapes under the transforma-
tion.

1 Blending in solid modeling

Blending operations in solid modeling generate
smooth transitions between two or several surfaces.
Blending is also considered a natural property of im-
plicit surfaces, where the basic operation is an al-
gebraic sum (or difference) between skeleton-based
scalar fields. Blending operations are typically used in
computer-aided design for modeling fillets and cham-
fers. These operations are usually smooth versions of
set-theoretic operations on solids (intersection, union,
and difference), which approximate exact results of
these operations by rounding sharp edges and ver-
tices.

The major requirements to blending operations [1]
are tangency of the blend surface with the initial sur-
faces, automatic clipping of unwanted parts of the
blending surface, C1 continuity of the blending func-
tion everywhere in the domain, support of added and
subtracted material blends. Special attention is paid
to the intuitive control of the blend shape and posi-
tion: the construction of the blend and its parameters
should have clear geometric interpretation.
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Figure 1: Components of the definition of the ternary
bounded blending union operation.

2 Bounded blending

To satisfy most of the above requirements for solids
exactly represented by continuous real functions
(with implicit surfaces as boundaries), we intro-
duce bounded blending operations defined using R-
functions [2] and displacement functions with the lo-
calized area of influence. The shape and location of
the blend is defined by an additional bounding solid
thus making the ternary blending operation (having
three solids as arguments).
Let two initial solids be described by the inequali-

ties f1(X) ≥ 0 and f2(X) ≥ 0, and the bounding solid
be described as f3(X) ≥ 0, where fi are continuous
real functions, and X is a vector of point coordinates.
The bounded blending operation can be defined as

Fb(f1, f2, f3) = R(f1, f2) + dispb(f1, f2, f3)

where R stands for an R-function defining one of the
set-theoretic operations, and dispb is a displacement
function. For example, a union operation can be ex-
actly defined by the following R-function:

R(f1, f2) = f1 + f2 +
√
f1

2 + f2
2

The relatioships between the components of the def-
inition of the ternary bounded blending union oper-
ation are shown in Fig. 1. In the upper part of the
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figure two solids to be blended (f1 and f2 ) and a
bounding solid f3 are shown. The lower part illus-
trates the behavior of the functions dispb and r in the
cross-section A of the bounding solid.
It is required that the blending surface exists

only inside the bounding solid, and only initial
surfaces exist outside the bounding solid. There-
fore, the displacement function dispb(r), where
r = r(f1, f2, f3) is a generalized distance from the
initial surfaces, has to satisfy the following conditions:

1) dispb(r) ≥ 0, it takes the maximal value for
r = 0, and the displacement is symmetric in respect
to the initial defining functions;

2) dispb(r) = 0, r ≥ 1, is a condition of the blend
localization inside the bounding solid;

3) ∂dispb/∂r = 0, r = 1, means the curve dispb(r)
tangentially approaches the horizontal axis at r = 1
and accordingly the blend tangentially approaches ini-
tial surfaces.
There are many different functions satisfying the

above requirements. Here, we use the polynomial
function of lowest order:

dispb(r) = 2r3 − 3r2 + 1

A different displacement function and details of the
generalized distance r(f1, f2, f3) function construc-
tion can be found in [3].

Figure 2: Ternary blending operation: two ellipsoids
to be blended and the boundung ellipsoid (transpar-
ent).

Let us illustrate such properties of the proposed
bounded blending operation as its local character and
intuitive control of blend shape and position. In
Fig. 2 the pure union of two ellipsoids is changed to
the bounded blending union using the third ellipsoid
(transparent shape). The resulting blend is located
strictly inside the bounding ellipsoid, which produces
an unusual blending shape localized at the top part of
the initial union of ellipsoids. At the next step (Fig.
3), we increase the size of the bounding ellipsoid and
correspondingly change the shape of the blend, which
stretches out to the lower part of the initial shape.

Figure 3: Control of blending by changing the bound-
ing solid.

Figure 4: Multiple blending controlled by a bounding
solid consisting of four disjoint components.

The definition of the bounding solid by a single
function allows for unusual operations such as mul-
tiple blending. As it is shown in Fig. 4, the bound-
ing solid can be constructed using arbitrary primi-
tives and operations. In this example, the bound-
ing solid controls the blending union of two non-
intersecting tori. The bounding solid is described us-
ing R-functions by a single function f3 as union of four
ellipsoids. The result of the bounded blending opera-
tion is a single connected solid with multiple blending
components located inside the disjoint components of
the bounding solid.
The proposed bounded blending operations can re-

place pure set-theoretic operations in the construction
of a solid without rebuilding the entire construction
tree data structure. Note that the ternary bounded
blending operations have three solids as their argu-
ments and hence require ternary nodes in the con-
struction tree in comparison with binary nodes typ-
ical for the traditional Constructive Solid Geometry
(CSG).

3 Space-time blending

Shape transformation between given objects (meta-
morphosis) is one of typical space-time modeling op-
erations. The existing approaches to metamorphosis
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are based on one or several of the following assump-
tions: equivalent topology (mainly topological disks
or balls are considered), polygonal shape representa-
tion, shape alignment (shapes have common coordi-
nate origin and significantly overlap), possibility of
shape matching (establishing of shape vertex-vertex,
control points or other features correspondence), the
resulting transformation should be close to the motion
of an articulated figure.
Linear interpolation between functionally defined

shapes have proven to solve some of the above prob-
lems for computer animation and artistic applications.
The problem which remains open is a transforma-
tion between non-overlapping shapes, which combines
metamorphosis and non-linear motion. We develop a
new approach to shape metamorphosis using blend-
ing operations in space-time. The key steps of the
metamorphosis algorithm are: dimension increase by
converting two input kD shapes into half-cylinders
in (k + 1)D space-time, applying bounded blending
union to the half-cylinders, and making cross-sections
for getting intermediate shapes [4].
The bounded space-time blending procedure for 2D

shapes consists of the following steps:
1) two initial 2D shapes are given on a 2D plane;
2) each shape is considered as a 2D cross-section of
a half-cylinder (a semi-infinite cylinder bounded by a
plane from one side along the time axis) defined in 3D
space-time;
3) two half-cylinders are placed at some distance along
time axis to provide a time interval for making the
blend;
4) the bounded blending union operation with added
material is applied to the 3D half-cylinders with two
planar half-spaces orthogonal to the time axis forming
a bounding 3D object (a slab between two planes);
5) consecutive cross-sections of the blend along the
time axis are combined into a 2D animation.
As no critical assumptions were made in the pro-

posed approach about the dimensionality of the initial
shapes, we can apply it to 3D objects. In this case,
each shape is considered as a 3D cross-section of a
half-cylinder defined in 4D space-time. Note that in
both 2D and 3D cases topological changes of objects
are handled automatically as shown in Fig. 5.

4 Conclusion

We proposed an original solution for a long-standing
problem of the blend localization and control. The
main idea is to apply localized displacements to the
standard R-functions describing pure set-theoretic op-
erations. This allows for support of several unusual
operations such as multiple blending or partial edge
blending, which hardly can be supported by other
modeling techniques.
We discribed a new approach to shape metamor-

Figure 5: Metamorphosis of a cube into the union of
two tori using space-time bounded blending.

phosis on the basis of the dimension increase, bounded
blending between higher-dimensional space-time ob-
jects, and cross-sectioning the blend area for getting
frames of the animation. The space-time blending op-
eration with such simple bounds as two planes satisfies
the condition of the localization of the shape trans-
formation at some predefined time interval. The pro-
posed approach can handle non-overlapping 2D and
3D shapes with arbitrary topology.
The described bounded blending operations have

three objects as their arguments. This brings a new
requirement for a functionally based modeling system
to support n-ary nodes in the construction tree.
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