
EWCG 2005, Eindhoven, March 9–11, 2005

Boolean Operations on 3D Selective Nef Complexes:
Optimized Implementation and Experiments∗

Peter Hachenberger Lutz Kettner

Abstract

Nef polyhedra in d-dimensional space are the closure
of half-spaces under boolean set operations. In con-
sequence, they can represent non-manifold situations,
open and closed sets, mixed-dimensional complexes
and they are closed under all boolean and topological
operations.
We implemented a boundary representation of

three-dimensional Nef polyhedra with efficient algo-
rithms for boolean operations. These algorithms were
designed for correctness and can handle all cases, in
particular all degeneracies. The implementation is re-
leased as Open Source in the Cgal release 3.1.
In this paper, we present experiments in order to (i)

evaluate the practical runtime complexity, (ii) illus-
trate the effectiveness of several important optimiza-
tions, and (iii) compare our implementation with the
Acis CAD kernel.

1 Introduction

Data structures for solids and algorithms for boolean
operations on geometric models are among the fun-
damental problems in solid modeling, computer aided
design, and computational geometry. We restrict our-
selves to partitions of three space into cells induced
by planes. A set of planes partition space into cells
of various dimensions. Each cell may carry a label.
We call such a partition together with the labelling
of its cells a Selective Nef Complex (SNC). When the
labels are boolean({in, out}) the complex describes
a set, a so-called Nef polyhedron [3]. Nef polyhedra
can be obtained from halfspaces by boolean opera-
tions intersection and complement. Figure 1 shows a
Nef polyhedron.
We gave a compact and unique representation of

SNCs and algorithms realizing set operations based
on this representation in [2]. The current imple-
mentation supports the construction of Nef polyhe-
dra from manifold solids, boolean operations, topo-
logical operations, and rotations by rational rotation

∗Max-Planck Institut für Informatik, Saarbrücken,
Germany, [hachenberger|kettner]@mpi-sb.mpg.de.

Partially supported by the IST Programme of the
EU as a Shared-cost RTD (FET Open) Project under Con-
tract No IST-2000-26473 (ECG - Effective Computational
Geometry for Curves and Surfaces)

Figure 1: Nef polyhedron with non-manifold edges, a
dangling facet, and two isolated vertices.

matrices. We follow the exact geometric computation
paradigm [6] to achieve robustness.
So far, we focused on the completeness of our al-

gorithms. In this work, we evaluate their perfor-
mance and present optimizations for important com-
mon cases. We evaluate their effectiveness individu-
ally and combined in a series of experiments.
Our current optimized implementation has become

efficient enough to compare it with other systems. We
selectedAcis R13, a common commercial CAD kernel
used in many CAD systems [5].

2 Data Structures

Definition 1 (Nef polyhedron [3]) A Nef-polyhe-
dron in dimension d is a point set P ⊆ Rd generated
from a finite number of open halfspaces by set com-
plement and set intersection operations.

Set union, difference and symmetric difference can
be reduced to intersection and complement. Set com-
plement changes between open and closed halfspaces,
thus the topological operations boundary, interior, ex-
terior, closure, and regularization are also in the mod-
eling space of Nef polyhedra. In what follows, we refer
to Nef polyhedra whenever we say polyhedra and we
restrict ourselves to three dimensions.
In our representation for three-dimensional Nef-

complexes, we use two main data structures:
Sphere Maps represent the local neighborhoods at

each vertex. We conceptually intersect the local
neighborhood of a vertex with a small ε-sphere. We
obtain a planar map on the sphere (Figure 2), which

139

21st European Workshop on Computational Geometry, 2005

Figure 2: An example of a sphere map. The different
colors indicate selected and unselected faces.

forms a two-dimensional Nef polyhedron embedded in
the sphere. Sphere maps were introduced in [1].
The Selective Nef Complex provides a more easily

accessible polyhedron representation. It additionally
stores the connections between the local sphere maps.
In detail it provides halfedges, facet cycles, halffacets,
shells and volumes.
Additionally, we have a kd-tree associated with

each Nef polyhedron. It provides fast point location
and ray shooting needed in binary operations.

3 Binary Boolean Operations

Based on the SNC data structure, we can implement
the binary boolean set operations. We find the sphere
maps of all vertices of the resulting polyhedron and
synthesize the SNC from there; in more detail:

1. Find possible candidate vertices. We take as can-
didates the original vertices of both input poly-
hedra, and we create all intersection points of
edge-edge and edge-face intersections.

2. Given a candidate vertex, we find its local sphere
map in each input polyhedron. If the candidate
vertex is a vertex of one of the input polyhedra,
its sphere map is already known. Otherwise a
new sphere map is constructed on the fly.

3. Given the two sphere maps for a candidate ver-
tex, we apply the boolean operation on sphere
map to obtain the resulting sphere map.

Boolean operations on spheres are an extension of
a planar sweep. Instead of a sweep line in the plane,
the spheres are cut into two hemispheres and a great
arc sweeps around each hemisphere.

4 Experiments

We experimentally evaluate the runtime behavior of
our implementation, in particular the binary boolean
operations. We have several experiments that support
the expected runtime, and we have designed experi-
ments to stress our implementation with worst-case
situations. We report on a subset here.
The tests are performed on a 846 MHz Pentium III

processor and 256MB RAM. We measure the total
runtime and the runtime of the following subroutines:

1. Point location: queries kd-tree of an input
polyhedron to locate a vertex of the other poly-
hedron.

2. Box intersection: intersection finding on the
bounding boxes only, excludes the cost of the
callback function, i.e., the intersection test on the
actual edge and facet geometry.

3. Sphere sweeps: sum of all sphere sweeps
performed during boolean operations on sphere
maps.

4. Synthesizing edges: in the synthesis step, sorts
an edge representation based on Plücker coordi-
nates.

5. Plane sweeps: in the synthesis step, sorts facet
boundary cycles of the result polyhedron.

6. bf Kd-tree construction: in the synthesis step,
initializes the kd-tree for the result polyhedron.

7. Others: all other parts not listed explicitly in
the same graph, i.e. parts which have no critical
worst-case or no interesting practical runtime.

Experiment TetGrid

1. Create a regular N3 grid T of random tetrahedra,
i.e., each tetrahedron is randomly generated in
half-open fixed-size cubical area. Those areas form
a regular N3 grid.

2. Create a regular (N − 1)3 grid C of cubes.

3. Align T and C such that the grid nodes of C are
at the centers of the grid cells of T .

4. Unite T and C. Measure time for experiment.

In our first test series, we want to examine the
generic runtime behavior if the two input objects
and the output object all have similar size. We cap-
ture these properties in the TetGrid experiment and
measure its runtime for values N = 3, . . . , 17.
In Figure 3 we see the runtime distributed over the

main subroutines. The plane sweeps, the kd-tree con-
struction and the point location comprise a major part
of the total runtime.
Two further experiments are performed in order to

find out about the generic runtime behavior of the bi-
nary operations. In the first, we combine two equally
sized polyhedra such that a quadratic sized polyhe-
dron results. The runtime of this experiment is mostly
determined by the kd-tree construction.

140

EWCG 2005, Eindhoven, March 9–11, 2005

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20000 40000 60000 80000 100000 120000 140000

R
un

tim
e

[s
]

Vertices in Result

Plane sweep
Kd-tree construction

Point location
Other

Sphere sweeps
Synthesize Edges

Box Intersection

Figure 3: Runtime of the main subroutines in the
TetGrid experiment.

In the other experiment, we subtract a simple poly-
hedron from a complex polyhedron. Here, the point
location is essentially responsible for the runtime.
Furthermore, we perform several experiments in or-

der to stress the worst case runtime behavior of the
main subroutines. By this we confirm the theoreti-
cally evaluated complexity of the sphere sweep, plane
sweep, point location and the ray shooting subroutine.

5 Optimizations of the Sphere Overlays

We have seen in the previous section that certain sub-
routines of the algorithm are very dominant. We im-
plemented several optimizations that prevent the exe-
cution of some complex subroutines for many common
and easy cases. Here, the optimization of the sphere
overlays was most effective.
The sweep-line algorithm is a powerful tool; We use

it in the plane for facet boundary cycles and we use
it on half-spheres for the sphere maps. However, it is
a comparatively costly step, although its asymptotic
complexity is close to optimal.

optimizations number of runtime
(i) (ii) (iii) sweeps sweeps total

- - - 240470 345.12 480.34
+ - - 14858 36.41 189.56
- + - 201227 301.02 437.17
- - + 217484 335.84 478.56
+ + + 12880 27.67 163.65

We evaluate the contribution of the sphere sweeps
to the total runtime of a binary boolean operation
with a TetGrid experiment for N = 16. The table
above lists the number of sphere sweeps performed
during this operation, together with the runtime of
the overlay and the total runtime. The values in the
first row refer to a test run without any optimizations.
The other rows refer to test runs with one or more of
the following optimizations activated:

(i) The sphere sweep algorithm is used only in com-
plex cases. In most cases, the overlay is com-
puted by specialized algorithms.

(ii) Our sphere sweep can process one half-sphere at
once. A lot of extra work has to be done to cut
each sphere map into two halves and to paste the
two resulting half-spheres back together. We try
to get by with sweeping only one half-sphere, if
possible.

(iii) For some vertices of the input polyhedra it is
easy to determine that they will not appear in
the resulting polyhedron. For instance, in a
union operation every vertex of either polyhe-
dron located in the inside of the other polyhe-
dron is absorbed into this volume. We do not
perform an overlay on these vertices.

6 Comparison with ACIS R13

We compare our implementation with Acis R13, a
common commercial CAD kernel used in many CAD
systems [5]. It should be said that we are comparing
apples with oranges here. Acis is handling more gen-
eral geometries and has some overhead in dispatching
function calls to the specialized functions for linear ge-
ometry. On the other hand, our implementation han-
dles Nef polyhedra in their full generality with all the
potentially occurring degeneracies in the algorithms
and it uses exact arithmetic to be reliable and robust.

6.1 Balanced Binary Operations

To get a general impression, we repeat the TetGrid

experiment with Acis. Naturally, both algorithms
perform on the same data sets.

runtime [s]
N result vertices

Acis R13 Nef 3D

3 352 0.29 1.01
4 1135 0.63 3.67
5 2390 1.37 8.43
6 4548 2.79 17.30
7 7383 5.29 29.20
8 11555 10.13 44.29
9 16998 14.27 70.26

10 23883 22.81 102.09
12 43418 35.58 192.12
14 70827 swapping 316.71

The table above shows that Acis is faster by a fac-
tor of 4 to 6. No obvious trend is visible.
We get quite a different result, if we subtract a sim-

ple object from a complex object. Here, the difference
between Acis and our algorithm is quite pronounced
with Acis being a factor of about twenty times faster.
A notable difference might be in the software inter-
face; Acis modifies the first input object to become

141

21st European Workshop on Computational Geometry, 2005

the result, while our implementation creates the result
from scratch.

6.2 Floating-Point versus Exact Arithmetic

One of the major differences between Acis and our
implementation is our use of exact arithmetic instead
of floating point-arithmetic. Floating-point and in-
terval arithmetic are the state-of-the-art in Computer
Aided Design, but we are not aware of any system that
uses exact arithmetic to solve the remaining cases that
floating-point and interval arithmetic cannot solve.
An obvious reason is the runtime cost for exact arith-
metic, but also the difficulties in realizing exact and
efficient solutions for more general curves and surfaces
may play a role.

Experiment RotCylinder

1. Create two identical right cylinder C and C′, such
that the base is a regular polygon with N sides
parallel to the x-y plane.

2. Rotate C′ around its vertical centerline by α.

3. Unite C and C′. Measure time for experiment.

We use the RotCylinder experiment to demon-
strate the effect of exact arithmetic; on one hand, we
gain expressiveness in modeling, because we can com-
pute results where Acis fails very soon, and on the
other hand, it shows the runtime cost for exact arith-
metic, since the input coordinates grow in this series
of experiments.
In this test scenario the endpoints of the intersec-

tion edges are extremely close together. Without an
adequate precision it is not possible to compute an

n α
runtime

Acis R13
runtime
Nef 3D

100

10−1

10−2

10−3

10−4

10−5

1.08s
1.05s
1.08s
1.07s

not executable

4.65s
4.77s
4.85s
4.90s
5.03s

1000

10−1

10−2

10−3

10−4

61s
61s
61s

not executable

93s
95s
97s
98s

2000

10−1

10−2

10−3

10−4

252s
253s
255s

not executable

274s
280s
288s
290s

10000 10−7 not executable 4433 s

intersection point that is on both edges and different
from the endpoints.
The table above shows that Acis’ floating-point op-

erations are insufficient for α smaller than 10−3. On
the other side, Acis is faster, in particular for small
instances. For n = 100 the factor of our runtime and
Acis’ runtime is slightly below 5; for n = 2000 it is
less than 1.2. Additionally, we performed a run with
n = 10000, α = 10−7 to highlight the robustness of
our arithmetic operations.

7 Conclusion

We achieved our goal of a complete, exact, correct
and efficient implementation of boolean operations on
a very general class of polyhedra in space. Useful ex-
tensions with applications in exact motion planning
are Minkowski sums and the subdivision of the solid
into simpler shapes, e.g., a trapezoidal or convex de-
composition in space.
For ease of exposition, we restricted the discussion

to boolean flags. Larger label sets can be treated anal-
ogously.
Nef complexes are defined by planes. It follows

from the work on the Selective Geometric Complexes
(SGC) of Rossignac and O’Connor [4] that our data
structures extend immediately to complexes defined
by curved surfaces. However, some of the algorithmic
steps become difficult and need further work, such as
the synthesis algorithm, where we need unique repre-
sentations of intersection curves and where we need
to sort points on intersection curves.

References

[1] K. Dobrindt, K. Mehlhorn, and M. Yvinec. A complete
and efficient algorithm for the intersection of a general
and a convex polyhedron. In Proc. 3rd Work. Alg.
Data Struct., LNCS 709, pages 314–324, 1993.

[2] M. Granados, P. Hachenberger, S. Hert, L. Kettner,
K. Mehlhorn, and M. Seel. Boolean operations on 3D
selective Nef complexes: Data structure, algorithms,
and implementation. In Proc. 11th Annu. Europ. Sym-
pos. Algorithms (ESA’03), LNCS 2832, pages 654–666.
Springer, 2003.

[3] W. Nef. Beiträge zur Theorie der Polyeder. Herbert
Lang, Bern, 1978.

[4] J. R. Rossignac and M. A. O’Connor. SGC: A
dimension-independent model for pointsets with in-
ternal structures and incomplete boundaries. In
M. Wozny, J. Turner, and K. Preiss, ed., Geom. Model.
for Prod. Eng. North-Holland, 1989.

[5] A Dassault Systèmes company Spatial Corp. ACIS
R13 Online Help, 2004.

[6] C. Yap. Towards exact geometric computation. Com-
put. Geom. Theory Appl., 7(1):3–23, 1997.

142

