EWCG 2005, Eindhoven, March 9-11, 2005

Exact Analysis of Optimal Configurations in Radii Computations

(Extended abstract)

René Brandenberg®

Abstract

We propose a novel characterization of (radii-) mini-
mal projections of polytopes onto j-dimensional sub-
spaces. Applied on simplices this characterization al-
lows to reduce the computation of an outer radius
to a computation in the circumscribing case or to the
computation of an outer radius of a lower-dimensional
simplex. This allows to close a gap in the knowledge
on optimal configurations in radii computations, such
as determining the radii of smallest enclosing cylin-
ders of regular simplices in general dimension.

1 Introduction

Radii computations of the following form occur in
many applications in computer vision, robotics, com-
putational biology, and massive data set analysis (see
[7] and the references therein). Let £;,, be the set of
all j-dimensional linear subspaces (hereafter j-spaces)
in n-dimensional Euclidean space E™. The outer j-
radius R;(C') of a convex body C' C E™ is the radius
of the smallest enclosing j-ball in an optimal orthog-
onal projection of C' onto a j-space J € L; ,, where
the optimization is performed over L;,,. The optimal
projections are called Rj-minimal projections. See
[1, 5, 10] for exact algebraic algorithms, [8, 11, 14] for
approximation algorithms, and [3, 7] for the computa-
tional complexity. In this paper we show the following
new characterization of optimal projections:

Theorem 1 Let 1 < j < n < m and P =

conv{vM ... v(™} c E"™ be an n-polytope. Then
one of the following is true.

a) In every Rj-minimal projection of P there exist
n—+1 affinely independent vertices of P which are
projected onto the minimal enclosing j-sphere.

b) j > 2 and R;(P) = R;j_1(PNH) for some hyper-
plane H = aff{v") : i € I} with I C {1,...,m}.

If j =1 or if P is a regular simplex then always case
a) holds. Moreover, the number v of affinely indepen-
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dent vertices projected onto the minimal enclosing j-
sphere is at least n—j+2 and there exists a (v—1)-flat
F such that Rj(P) = Rj4,—n—1(PNF). The bound
n — j + 2 is best possible.

Theorem 1 allows to reduce the computation of an
outer radius of a simplex to the computation in the
circumscribing case or to the computation of an outer
radius of a facet of the simplex. Reductions of small-
est enclosing cylinders to circumscribing cylinders are
used in exact algorithms as well as for complexity
proofs (see, e.g., [1] and [7]), and have previously been
given only for j € {1,n} as well as for dimension 3.
Theorem 1 generalizes and unifies these results.

The characterization provides effective means for
the analysis of optimal configurations in radii compu-
tations (for general dimension a known difficult task).
As an example, we reduce the computation of the
outer (n—1)-radius of a regular simplex to the follow-
ing optimization problem of symmetric polynomials in
n variables:

n+1 n+1
min Y s} st. > s = 0,
i=1 i=1 (1)
n+1 n+1
s2 = 1, and >.s; = 0.
i=1 i=1

The system is solved by reducing it to an optimiza-
tion problem in six variables with additional integer
constraints, leading to the following result.

Theorem 2 Let n > 2 and 17" be a regular simplex
in E™ with edge length 1. Then

=l ifn s odd,
R (T7) = 1

24/2n(n+1)

The case n odd has already been settled indepen-
dently by Pukhov [9] and Weiibach [12] who both left
open the even case. There also exists a later paper on
R, _1(T7") for even n [13], but as pointed out in [1]
the proof contained a crucial error. Thus Theorem 2
(re-)completes the determination of the sequence of
outer j-radii of regular simplices [9].

if n is even.

LAll omitted proofs as well as further analysis of the prob-
lems can be found in the full paper [2].
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2 Preliminaries

Throughout the paper we work in Euclidean space E™,
i.e., R™ with the usual scalar product x - y and norm
l|z]] = (x-2)'/2. B™ and S*~! denote the (closed) unit
ball and unit sphere, respectively. For a set A C E",
the linear, affine, and convex hull of A are denoted by
lin(A), aff(A), and conv(A), respectively.

A set C C E” is called a body if it is compact,
convex and contains interior points. Accordingly,
we always assume that a polytope P C E" is full-
dimensional (unless otherwise stated). Let 1 < j < n.
A j-flat F (an affine subspace of dimension j) is per-
pendicular to a hyperplane H with normal vector h
if h and F are parallel. For p,p’ € E™ and subspaces
EeLlj,, E'€Ljp,ajflat F=p+ E and a j'-flat
F' =p' + E are parallel if EUE" =1lin(EUE’). A j-
cylinder is a set of the form J+pB” with an (n—j)-flat
Jandp > 0. Let 1 <j <k <n. IfC' CE"is acom-
pact, convex set whose affine hull F' is a k-flat then
R;(C") denotes the radius of a smallest enclosing j-
cylinder C’ relative to F', i.e., C' = J'+R;(C")(B"NF)
with a (k — j)-flat J' C F.

A simplez conv{v™ ... oD} (with affinely in-
dependent v ... vt ¢ E™) is regular if all its
vertices are equidistant. Whenever a statement is in-
variant under orthogonal transformations and transla-
tions we denote by T the regular simplex in E™ with
edge length /2. Let H? = {x € E"+! . Z?;ll T =
a}. Then the standard embedding T™ of T™ is defined
by T" = conv{e(i) cErtl1<i< n—i—l} c HY,
where e(® denotes the i-th unit vector in E**'. By
Sl = S" N HY we denote the set of unit vectors
parallel to HY. A j-cylinder C containing some sim-
plex S is called a circumscribing j-cylinder of S if all
the vertices of S are contained in the boundary of C.

3 Minimal and circumscribing j-cylinders

The minimal enclosing ball B of a polytope P C E"
may contain only few vertices of P on its boundary,
but in cases where less than n + 1 vertices of P are
contained in the boundary of B, there exists a hyper-
plane H such that P Nbd(B) C H and the center of
B is contained in H. Then the smallest enclosing ball
of P and the smallest enclosing ball of P N H rela-
tive to H have the same radius. In [6] the following
characterization for the minimal enclosing 1-cylinder
(two parallel hyperplanes defining the width of the
polytope) is given:

Proposition 3 Any minimal enclosing 1-cylinder of
a polytope P C E™ contains at least n + 1 affinely
independent vertices of P on its boundary:.

We provide a characterization of the possible configu-
rations of minimal enclosing j-cylinders of polytopes,
unifying and generalizing the above statements.
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Lemma 4 Let P = conv{v™, ... 0™} be a poly-
tope in E", 1 < j <n—1, and J be an (n — j)-flat
such that C = J + R;(P)B" is a minimal enclosing
j-cylinder of P. Then for every I C {1,...,m} such
that {i : v € bd(C)} C I and Hy := aff{v® : i ¢
I} is of affine dimension n — 1, J is parallel to Hj.

Proof. Suppose that there exists a hyperplane H :=
Hj of this type with J not parallel to H. Let n :=
{v® € H : 1 <i < m}|. Without loss of generality
H={zecE" :z,=0and I = {vM®, ... o™}
Hence, v*+D .. 0™ ¢ HUbA(C).

It suffices to consider the case that J is not per-
pendicular to H. Let p,sW,..., s~ e E™ such
that J = p + lin{s(M,... s(»=9)1 Since J is not
parallel to H, we can assume p = 0 € J N H,
5511) =...= sEZ’*j*” =0 and s%nfj) > 0. For every
sh € (0,5 )y and s = (sgn_j)7 e sfln:lj), s,) € E?
let J' = p+lin{s™M, ... s("=7=1 &} Since J and H
are not perpendicular we obtain .J # J’, and because
v v™ € H that

dist(v@, J') < dist(0@,J), 1<i<a, (2)
where dist(+, -) denotes the Euclidean distance. In (2),
“<” holds whenever vV ¢ K := J+-n H. Ob-
viously, dim(K) = j — 1. If none of the v() lies
in K Nbd(C) then, by choosing s/, sufficiently close
to s%n_]), all vertices of P lie in the interior of
C' = J + R;(P)B", a contradiction to the minimal-
ity of C. Hence, there must be some vertex of P in
KNbd(C). Let k := [{v(® € KNbd(C) : 1 <i < m}|
We can assume that v, ... 0®) € K nbd(C). Let

= conv{v™M, ... o™} and k := dim F. Suppose
FnJ = 0. We have shown above that for suffi-
ciently small s/, the rotation from J to J’ keeps all
vertices within the j-cylinder €’ and v, ... v(*) are
the only vertices on bd(C’). Let J” be a translate of
J' with dist(J”, F') < dist(J', F), and J” sufficiently
close to J’' to keep v**t1D . (™) within the interior
of C" = J" + R;(P)B". Then all vertices of P lie in
the interior of C”, again a contradiction.

It follows that FNJ # 0, and since F C K = J*NH
that FN.J = p = 0. Since dist(p,v)) = R;(P)
for all i € {1,...,k} and since p € F, it follows
that p is the unique center of the smallest enclos-
ing k-ball of F. Let J"” result from J' by ro-
tating J’ around the origin towards a direction in
R™ \ (U, (v®)L). For i € {1,...,k} the prop-
erty dist(v(?,.J) = dist(v®, J') = dist(v?, p) implies
dist(v®, J") < dist(v@, J'). By keeping the rotation
sufficiently small, v**1) . v(™) remain in the inte-
rior of C"" = J" + R;(P)B™. Now, all vertices lie in
the interior of C", once more a contradiction. O

Lemma 5 Let P = conv{v™ ... 0™} be a poly-
tope in E", 1 < j < n, and J be an (n — j)-flat
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such that C = J + R;(P)B" is a minimal enclos-
ing j-cylinder of P. If there exists a hyperplane
r = aff{v) : i € I} which is parallel to J, then

one of the following holds:

a) There exists a vertex v\") ¢ Hj that lies on the
boundary of C; or

b) 7= 2, J C Hy, and RJ(P) ZRj_l(PﬁHI).

Proof. By Proposition 3, for j = 1 always a) holds;
so let 7 > 2, and suppose neither a) nor b) holds.
Since b) does not hold there exist (n— j)-flats parallel
to J and closer to Hy, and since a) does not hold, for
any such (n—j)-flat J, such that all vertices v(*) ¢ H;
stay within C, the distances from the vertices v, i €
I, to J’ are strictly smaller than their distances to J.
Hence C cannot be a minimal enclosing cylinder. [

In the case that P is a simplex, the proof can be
carried out more explicitly: Let P("t1) be the facet
of P not including the vertex v("+1). Suppose that J
is parallel to P"+1) that P"+) ¢ H := {2 € E" :
x, = 0}, and that v(nH) > 0. Let p € J. Since

0" > 0 it follows p, > 0 and obviously

R;(P) > oY —p,. (3)
On the other hand, since .J is parallel to P(**+1)
R;(P)* = R;_,(P"*V) 4 p}.. (4)

Let p, = (0" "")% — R2_, (P™1)) /20" be the
unique minimal solution for p, to (3) and (4). Due
to p, > 0, we obtain p,, = max{0,p’}. Now, we see
that case a) holds if p, = p% and case b) if p, = 0.

If the number v of affinely independent vertices of
P lying on the boundary of C is at most n, it follows
from Lemma 4 and 5 that case b) of Theorem 1 must
hold. Moreover, if v < n — 1 we can apply these lem-
mas on the lower-dimensional polytope P N H; with
Hj as in Lemma 5. This argument can be iterated. If
during this iteration the outer 1-radius of a polytope
P’ has to be computed, then by Proposition 3 the min-
imal enclosing 1-cylinder touches at least dim(P’) + 1
affinely independent vertices. From the same iterative
argument it follows that R;(P) = Rjyy—n—1(PNF)
for some (v — 1)-flat F.

Suppose S = conv{v™, ... vt} is a simplex in
E", and J an (n — j)-flat, such that

dist (v, .J) - = dist(v" 72 )

= Ry(conv{pW, . .  o(=i+2}
> dist(v™ I+ )
> o> dist(v™D ),
Then R;(S) = Ry(conv{v®, ... v("=7¥2)}) and n —

j + 2 vertices are situated on the boundary of the
minimal enclosing j-cylinder.

The last point which remains to proof Theorem 1 is
that every minimal enclosing j-cylinder of the regular
simplex T™ is circumscribing. Due to Proposition 4 it
suffices to show that p} is positive for all 1 < j < n—1,
showing that b) in Lemma 5 never holds for 7. We
omit the details and refer to the full paper [2].

4 Reduction to an algebraic optimization problem

In this section, we provide an algebraic formulation
for a minimal circumscribing j-cylinder J + p(B"*1 N
Hy) of the regular simplex T™. Let J = p +
lin{s™M, ... 5"} with pairwise orthogonal (p.o.)
s .. s ¢ 8”1 and p be contained in the
orthogonal complement of lin{s™), ... s} The
projection P of a vector z € H} onto the orthogonal
complement of lin{s("), ..., 5"~} (relative to H})
can be written as P(z) = (I — S p—] s®)(s0)T)z,
where I denotes the identity matrix. Usmg the con-
vention z2 := z - x, the computation of the square of
R; for a polytope with vertices v, 0™ (embed-
ded in H}) can be expressed as

min p?
(i) s.t. (p—Pv)?2 < p?,
(iil) s s e Sl po.,
(iv) p € HT,
where i =1,...,mand k=1,...,n — j. In the case
of T", (i) can be replaced by
n—j 2
(i) <p_ e 4 ngk)s(k)> = 02,
k=1

where the equality sign follows from Theorem 1. By
(ii) and s € S"~1, (i) can be simplified to

n—j

@) -0 = Y )2 -1

k=1

Summing over all i gives ( D (p?—p?) = (n—j)+2—
(n+1),ie., p?—p? = . We substitute this value
into (i”) and obtain p; = 5 (% -y 1( (k)) )

Hence, all the p; can be replaced in terms of the s(k),

. 2+ n—4)2-(n—J))
4(n+1)
n—i—l n— ] k 2 j—l
- . (5
n+1l n—j
P JES — _EZZ(SE;C/))QS k)
=1 k/'=1

We arrive at the following characterization of the min-
imal enclosing j-cylinders:
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Theorem 6 Let 1 < j < n. A set of vectors
s ... s(n=3) € 8"=1 spans the underlying (n —
Jj)-dimensional subspace of a minimal enclosing j-
cylinder of T™ C 'H} if and only if it is an optimal
solution of the problem

o (Her)

i=1 \k=1
n+1 n—j ,
k k
s.t. >3 (s = o,
i=1 k=1
s s e s po,

where k=1,....,n—j.

In case j = n — 1 the previous program reduces
to (1). By (5), in order to prove R,_1(T™) = (2n —
1)/(24/n(n + 1)) for even n, we have to show that the
optimal value of (1) is 1/n. We apply the following
statement from [1].

Proposition 7 Let n > 2. The direction vector
(51,...,5n41)" of any extreme circumscribing (n—1)-
cylinder of T™ satisfies |{s1,...,$n+1}| < 3.

Using Proposition 7, (1) can be written as the follow-
ing polynomial optimization problem in six variables
with additional integer conditions.

min klszll + kgS% + k38§

(1) s.t. kls:{’ + kgsg + kjgsg = 0,

(11) /€18% + /{2285 + ]{J3S§ = 1, (6)
(111) k151 + k252 + k353 = 0 ,

(IV) k1+k2+k3 = TL+].,

51,52,83 €R, ki, kg, k3 € Np.

Since the odd case of Theorem 2 is well-known [9, 12],
we assume from now on that n is even.

For k3 = 0 the equality constraints in (6) immedi-
ately yield k; = ko = (n+ 1)/2 ¢ N, and similarly,
for so = s3 we obtain ky = ko + ks = (n+1)/2 ¢ N.
Hence, we can assume that s1, sg, and s3 are distinct
and ki, ko, ks > 1. Moreover, for s3 = 0 the result-
ing optimal value is 1/n which will turn out to be the
optimal solution. Finally, by (iii), not all of the s;
have the same sign. Hence it suffices to show that for
s1 < 0 and s3 > sy > 0 every admissible solution to
the constraints of (6) has value at least 1/n.

The linear system in ky, ko, k3 defined by (i), (ii),
and (iii) is regular and can be solved for ky, ko, k3:

- S92 —+ S3
b= —51(82 - 51)(33 - 31) , (7)
. S1 + 83
ke = s2(s2 — 51)(s3 — s2) 7 (8)
By = it (9)

83(83 — 81)(83 — 82)

Since all factors in the denominators are strictly pos-
itive, (8) and (9) imply in particular s; + s3 > 0 and
s1+ 52 <0.
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With (iv) in (6) we can express one of the s; by the
others, e.g. s = 7%7 and using this it can
be successively shown that ky < (n + 1)/2. Thus by
the integer condition k; < n/2, and it follows that for
any admissible solution to the constraints of (6) the
objective value is at least 1/n (for details see [2]). By
our remark before Proposition 7 this completes the
proof of Theorem 2.
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