
EWCG 2005, Eindhoven, March 9–11, 2005

An Efficient Algorithm for Label Updating in 2PM Model to Avoid a
Moving Object

Farshad Rostamabadi∗ Mohammad Ghodsi †

Abstract

In this paper, we present a simple and fast algorithm
for updating labels of a set of points in presence of
a moving point-shaped object. The labels are as-
sumed to be axis parallel, unit length, square shaped,
each attached exclusively to a point on one of its hor-
izontal (vertical) edges, denoted by 2PM model. The
updated labeling should include all labels, avoid the
moving point with largest possible label length. We
allow flip and resize operations on labels for updating
a labeling. The known algorithm for this problem,
where labels may be attached to their corresponding
points on the middle of any edges, the 4PM model,
uses O(n2) preprocessing time and O(n) space to up-
date the labeling in O(lg n + k) time, where k is the
number of update operations (Rostamabadi and Gh-
odsi, CCCG’04). In this paper, we present a simpler
and more efficient algorithm that uses O(n lg n) time
and O(n) space for preprocessing with simplified data
structures and updates the labeling with the same
time bound.

1 Introduction

Automated label placement is an important problem
in map generation, geographical information systems,
and computer graphics. This problem, in its simple
form, is to attach a label (regularly a text) to each
point, line, curve, or a region in the map. Point-label
placement has received good attention. In a valid la-
beling, labels should be pairwise disjoint, and each la-
bel should be attached to its feature point [2]. There
are different variations of point-labeling that are dis-
cussed in [1, 3, 5, 6, 7].
In this paper, we are interested in a simple and effi-

cient algorithm to update labels in a point-labeling
map. We assume that our map is composed of a
number of points each labeled by a unit-length axis-
parallel square label. It is assumed that the point
of each label appears in the middle of only one of
its horizontal (vertical) edges. Hereafter, we denote
this labeling model by 2PM1. Besides, a point-shaped

∗School of Computer Science, Institute for Studies in Fun-
damental Sciences, Tehran, Iran. rostamabadi@ipm.ir

†Computer Engineering Department, Sharif University of
Technology, Tehran, Iran. ghodsi@sharif.edu

12P is a known two-position label modeling, and we add an

object moves on the labeling and triggers an event
every time it changes its location. Labels are allowed
to be flipped or resized to avoid the moving object.
The goal is to efficiently generate the updated label-
ing with maximum label length in response to each
event triggered by the moving object.
A more general version of this problem, where each

point can appear at the middle of any of four edges
of its label, is considered in [4]; we refer to this label-
ing model as 4PM. Although, the proposed algorithm
also works for our problem, but we are interested in a
simpler algorithm with more efficient data structures.
Authors of [4] present a weighted and directed

graph, the conflict graph, to convey the effect of all
possible flip and resize operations. Since the conflict
graph may have complex structure, the preprocessing
phase requires O(n2) time in 4PM model.
We use the same definition of flip and resize opera-

tions as in [4], but we simplify the conflict graph defi-
nition by using some properties of the 2PM model,
hence the preprocessing time reduces to O(n lg n).
Besides, the result of the preprocessing phase can
be stored in a more simpler data structures. We
also show that the given labeling can be updated in
O(lg n+k) time in response to each event triggered by
the moving object, where k is the number of update
operations.

2 Definitions

The label updating problem is precisely defined as
follows. We are given a valid labeling L composed
of points P = {p1, p2, . . . , pn} and unit-length axis-
parallel square labels L = {E1, E2, . . . , En}, where Ei
is attached to pi on the mid-point of one of its hor-
izontal (vertical) edges. The moving point generates
an event whenever it changes its current position to
a new location q. The problem is to update L and
obtain a new q-avoiding labeling Lq for all points in
P, such that the moving point q does not intersect
with any label in Lq, while the new labels are as close
as possible to their original length. A label Ei can
be flipped over the edge containing its corresponding
point pi and the flipped position of Ei is denoted by
f(Ei). Ei can also be resized to any length, α ≤ 1 as

M to it to denote that the point should appear at the middle
of one of its horizontal (or vertical) edges of the label.

131

21st European Workshop on Computational Geometry, 2005

long as pi remains on the mid-point of its edge. The
new location of Ei is denoted by r(Ei, α). Such a final
re-labeling is denoted by q-avoiding optimum labeling.
We name the above labeling model as 2PM. To be

more precise, we formally define the 2PM and 4PM
square-labeling models as follows:

Definition 1 In 2PM model, every label is attached
exclusively to a point on the middle of one of its hor-
izontal (vertical) edges.

Definition 2 In 4PM model, every label is attached
exclusively to a point on the middle of one of its edges.

In next section, we formally define the conflict
graph.

2.1 The Conflict Graph

The conflict graph G = (V,E), where V = V + ∪ V −,
is a directed weighted graph encoding all possible flip
and resize operations. The conflict graph is both ver-
tex and edge weighted. Let vi be the representing
vertex for label Ei attached to the point pi. The set
V + (V −) contains all vertices vi where pi is on the
top (bottom) edge of Ei.
The edge set of the conflict graph, E , is composed of

three setsD+, D−, and B as follows. The edge setD+

(D−) contains all directed edges (vi, vj) where both vi

and vj belongs to V + (V −) and f(Ei) intersects Ej . If
f(Ei) intersects Ej but vi and vj are in different vertex
sets, then the undirected edge (vi, vj) belongs to B.
More formally:

E = D+ ∪D− ∪B, where
D+ = {(vi, vj)|vi, vj ∈ V +}, and
D− = {(vi, vj)|vi, vj ∈ V −}, and
B = {(vi, vj)|vi and vj are not in the same vertex set}.

A sample input labeling and the generated conflict
graph are shown in Figure 1. The D+ and D− edges
are solid while the B edges are dashed. Besides, the
vertices of V + have yellow (light gray) labels and the
vertices of V − have green (dark gray) labels. We de-
fine two induced subgraphs over the V + and V − ver-
tices in the following and will prove some important
properties for them in the next section.

G+ = (V +,D+),
G− = (V −,D−).

In G, an edge weight represents the optimal label
length of a single flip (and possibly one resize) opera-
tion on a single label, and a vertex weight represents
the optimal label length if multiple flip and resize op-
erations are allowed over all labels in the map. To
define the weight of an edge, we first introduce the g
function below.

(a) (b)

Figure 1: (a) Initial labeled map. (b) The conflict
graph: D+ and D− (solid) and B edges (dashed).

The resize operation is needed when two (original
or flipped) labels, say Ea and Eb, overlap. There are
many resize values of γa and γb such that the resized
labels r(Ea, γa) and r(Eb, γb) do not overlap. From
the problem definition, we are interested in the values
where min{γa, γb} is maximized. We define this value
as the g(Ea, Eb).
Performing a flip operation on Ei may cause an in-

tersection between f(Ei) and at most two other labels.
Let Ej be one of the intersecting labels with f(Ei). We
define the weight of the edge (vi, vj), for both directed
and undirected edges equal to g(f(Ei), Ej).
The weight assigned to vi, which denoted by w(vi),

represents the label length of a labeling when Ei is as-
sumed to be flipped and other labels may be flipped
or resized to generate the maximum possible label
length. Obviously, the weight of vertex vi has a very
close relation to the optimal labeling when the mov-
ing point is inside Ei. So, we first prove some basic
properties of the optimal labeling and then complete
the definition of vertex weight.

3 Properties of The Optimal Solution

Let the moving point be at position q inside label Ei,
and Lα

i be the optimal q-avoiding labeling with min-
imum number of flip and resize operations. Besides,
assume that all labels in Lα

i have length larger than
α ≤ 1. We define Gα

i = (V
α
i , E

α
i) as a subgraph of G

where V α
i contains all vertices that their correspond-

ing labels are flipped. Let Eα
i be the induced edges

over V α
i (all edges of E with both ends in V α

i). The
following lemmas show some basic properties of Gα

i .

Lemma 1 If vi ∈ V + then all vertices of V α
i are in

V +.

Proof. Assume that f(Ei) intersects a label Ej where
vj ∈ V −. Obviously, flipping Ej produces smaller la-

132

EWCG 2005, Eindhoven, March 9–11, 2005

bels of length g(f(Ei), f(Ej)) than g(f(Ei), Ej). So, in
the optimal solution, the vertex vj ∈ V − can not be-
long to Lα

i . �

From the above lemma, we can conclude that if
vi ∈ V + then Gα

i ⊆ G+. Besides, by the symmetry
of G+ and G−, we can also conclude that if vi ∈ V −
then Gα

i ⊆ G−

Lemma 2 Gα
i is a DAG, rooted at vi.

Proof. Since all vertices of Gα
i belong to either V

+

or V −, then all edges are upward or downward. So,
Gα

i can not contain a loop, and is a DAG. Besides, it
is easy to see that there is a directed path (a sequence
of flips) from vi to any other vertex in Gα

i hence vi is
the root vertex of Gα

i . �

Lemma 3 Let vj be a leaf vertex in Gα
i and (vj , vk)

be an edge attached to vj . Then one of the followings
is true:

1. If (vj , vk) exists then w(vj , vk) ≥ α,

2. vj has zero out-degree and (vj , vk) does not exist.

Proof. Will appear in final version. �

4 Vertex weight definition

In this section, we will provide a bottom-up recursive
definition and algorithm for vertex weights using lem-
mas from previous section. The weight of vi is the
minimum label length in the optimal updated label-
ing when Ei is flipped (equivalently, the query point is
inside Ei) and also corresponds to a subgraph of G+

or G− generating the optimal updated labeling. For
simplicity, we focus on G+, but all the definitions and
the algorithm can also be applied to G−.
First, we define the weight of zero out-degree ver-

tices of G+. Consider vi ∈ G+ where the out-degree
of vertex vi in G+, denoted by d+

out(vi), is zero. If vi is
also a zero out-degree vertex in G, then f(Ei) has no
intersection with other labels hence the optimal up-
dated labeling after flipping Ei has no label of length
less than one. Otherwise, the weight of undirected
edges starting from vi will define the vertex weight.
More precisely, where d+

out(vi) = 0, we have:

w(vi) = min({1} ∪ {w(vi, vj)|(vi, vj) ∈ B}).

Second, for non-zero out-degree vertices, consider
an edge (vi, vj) ∈ D+ and assume that Ei is flipped.
There are two alternatives to remove the intersection
between f(Ei) and Ej : (1) Resize both intersecting la-
bels to some smaller length, and (2) Flip Ej and solve
the problem recursively (if applicable). The minimum
generated label length is g(f(Ei), Ej) in the former case
(according to the definition of edge weight) and w(vj)

i

Figure 2: Gα
i and the optimal generated L

α
i .

in the latter case. We summarise the above descrip-
tion into a function, denoted by h, in the following:

h(vi, vj) =
{
max(w(vi, vj), w(vj)) , vj ∈ V +

w(vi, vj) , vj %∈ V +

Using above function, the vertex weights can pre-
cisely be defined as:

w(vi) =

min{{1} ∪ {w(vi, vj)|(vi, vj) ∈ B}}

, d+
out(vi) = 0

min{h(vi, vj)|(vi, vj) ∈ E}
, d+

out(vi) %= 0

Obviously, using a simple bottom-up algorithm, all
vertex weights can be calculated in O(n) time.
The value of w(vi) defines a DAG subgraph, de-

noted by Gi, rooted at vi and corresponds to the op-
timal labeling obtained by flipping Ei. Gi is generated
implicitly in the bottom-up calculation of w(vi) in
time O(n) for all vertices. But, if the value of w(vi) is
available, it can simply be obtained using a top-down
algorithm in time O(|Gi|).
In figure 2 an optimal labeling Lα

i along with the
corresponding Gi is shown for an arbitrary vertex.
Assume that the query point is inside Ei and we

have to flip Ei. Having w(vi) been calculated in the
preprocessing phase, we build Gi and produce the re-
quired update operations, in time k = O(|Gi|), using
the following transformation:

1. Flip label Em iff vm is not a leaf vertex in Gi,

2. Flip and resize Ej to min{w(vj , vk)|(vj , vk) %∈ Gi}
for all leaf vertices vj .

3. Resize Ek to length min{w(vj , vk)|Ek ∩ Ej %= ∅ ∧
vj ∈ Gi ∧ (vj , vk) %∈ Gi} for all vk %∈ Gi.

According to lemma 3, it is easy to see the following
theorem.

Theorem 4 The vertex subgraph Gi of vertex vi cor-
responds to the optimal labeling with labels of length
at least w(vi), when the query point is inside Ei and
Ei has to be flipped.

133

21st European Workshop on Computational Geometry, 2005

5 The Optimal Algorithm

In this section, we provide the optimal algorithm for
label updating in 2PM model. The algorithm has
a preprocessing and an online phase. In the former
phase, the optimal labeling lengths are computed and
stored for each label (vertex) in overall time O(n lg n).
In the later phase, we compute the operations re-
quired to update the labeling using the optimal label-
ing lengths in time O(lg n+ k) where k is the number
of flip and resize operations.
In the preprocessing phase the following steps

should be taken:

Preprocessing Phase

1. Build the conflict graph and compute edge and
vertices weights.

2. Build a point location data structure on all labels.

In the online phase, for a given point q, the optimal
labeling can be generated with the following steps:

Online Phase

1. Locate Ei containing q.

2. if no such label was found, then the original la-
beling is optimal and exit.

3. Maximize γ where r(Ei, γ) does not contain q.

4. if γ ≥ w(vi) then the resize operation r(Ei, γ)
generate the optimal labeling and exit.

5. Calculate Gi.

6. Transform Gi to the optimal labeling.

It is easy to see the following theorem.

Theorem 5 Given a moving point q on a labeling L,
the time required to generate an updated q-avoiding
labeling is O(lg n+ k) where k is the number of oper-
ation required to update L.

6 Conclusion

In this paper, we introduced the problem of updating
a squared axis-parallel labeled map to avoid a moving
point. We develop a simple and fast algorithm and
improve the previous results from O(n2) preprocess-
ing time to O(n lg n) with the same space and query
time. We modeled the initial labeling and update
operations with a weighted multi-graph with at most
O(n) edges and vertices called conflict graph. We also
showed that given a point q, the optimal q-avoiding la-
beling corresponds to a subgraph of the conflict graph
that can be found in time O(lg n+ k) where k is the
number of update operations.

References

[1] Rob Duncan, Jianbo Qian, Antoine Vigneron, and
Binhai Zhu. Polynomial time algorithms for three-
label point labeling. Theoretical Computer Sci-
ence, 296(1):75–87, 2003.

[2] Joe Marks and Stuart Shieber. The computational
complexity of cartographic label placement. Tech-
nical Report TR-05-91, Harvard CS, 1991.

[3] Zhongping Qin, Alexander Wolff, Yinfeng Xu,
and Binhai Zhu. New algorithms for two-label
point labeling. In Mike Paterson, editor, Proc.
8th Annu. Europ. Symp. on Algorithms (ESA’00),
volume 1879 of Lecture Notes in Computer Sci-
ence, pages 368–379, Saarbrücken, 5–8 September
2000. Springer-Verlag.

[4] Farshad Rostamabadi and Mohammad Ghodsi. A
fast algorithm for updating a labeling to avoid
a moving point. In Proceedings of the 16th
Canadian Conference on Computational Geome-
try (CCCG’04), pages 204–208, 2004.

[5] Michael J. Spriggs and J. Mark Keil. A new bound
for map labeling with uniform circle pairs. Infor-
mation Processing Letters, 81(1):47–53, 2002.

[6] Tycho Strijk and Alexander Wolff. Labeling points
with circles. International Journal of Computa-
tional Geometry and Applications, 11(2):181–195,
April 2001.

[7] Alexander Wolff, Michael Thon, and Yinfeng Xu.
A simple factor-2/3 approximation algorithm for
two-circle point labeling. International Jour-
nal of Computational Geometry and Applications,
12(4):269–281, 2002.

134

