
EWCG 2005, Eindhoven, March 9–11, 2005

Constructing Higher-Order Voronoi Diagrams in Parallel

Henning Meyerhenke∗

Abstract

We use Lee’s sequential algorithm [17] to create the
first parallel algorithm which constructs the order-k
Voronoi diagram of a planar point set. The algorithm
is developed and analyzed within two parallel mod-
els, the fine-grained PRAM and the coarse-grained
CGM. Its applications include k-nearest neighbor
searches in a parallel context, which are important for
many applications in computational geometry. The
fine-grained algorithm requires O(k log2 n) time and
O(k2n log n) work on a CREW-PRAM, whereas the
coarse-grained version requires the ordinary Voronoi
diagram as input and then takes O(k2(n−k) log n

p) run-
ning time and O(k) communication rounds on a CGM
with O(k2(n−k)

p) local memory per processor.

1 Introduction

The Voronoi diagram is one of the most popular geo-
metric structures studied in the field of computational
geometry due to its rich algorithmic application in
placement and motion planning, triangulations, con-
nectivity graphs and closest-site problems [5]. A gen-
eralization of ordinary Voronoi diagrams are those of
order k, whose regions are the locus of points with the
same k nearest neighbors. Given an order-k Voronoi
diagram, one can find the k-nearest point site of a
query point efficiently, which is very important for
generalized closest-site problems and for the closely
related higher order Delaunay triangulations [15].
Since these applications from geometry and geo-

graphic information systems often benefit from par-
allel computing, we develop a simple parallel algo-
rithm to construct all higher order Voronoi diagrams
of some given order k and below. After the descrip-
tion of the sequential algorithm the parallel algorithm
is developed and analyzed both in the fine-grained
PRAM model (section 2) and in the coarse-grained
CGM model (section 3), which is more relevant in
practice.
In an ordinary Voronoi diagram of a planar point

set S of size n each Voronoi region is induced by ex-
actly one point site of S, since it is the locus of points
with the same nearest neighbor in S. The concept
of order k extends this perception by making each
Voronoi region the locus of points which have the

∗Department of Computer Science, University of Paderborn,
henningm@upb.de

same k nearest neighbors (thus, an ordinary Voronoi
diagram has order one). An example of the order-2
diagram of a planar point set is depicted in figure 1.
Previous works on sequential algorithms for con-

structing higher order Voronoi diagrams include the
books of Preparata and Shamos [18] and Edelsbrun-
ner [13]. The latter points out the duality between
k-levels in arrangements and higher order Voronoi di-
agrams, an idea which is used in some of the sequen-
tial algorithms developed for the posed problem by
Agarwal et al. [1], Aurenhammer [4], Aurenhammer
and Schwarzkopf [6], Boissonnat et al. [7], Chan [8],
Chazelle and Edelsbrunner [9], Ramos [19], and Lee
[17].

Figure 1: Voronoi diagram of order 2 of a planar point
set, generated with an applet written by B. Schaudt
[20].

D. T. Lee [17] describes a sequential algorithm for
computing the family of all these diagrams of order
≤ k in O(k2n log n) time. His method is iterative as
it modifies Vi(S), the Voronoi diagram of order i, in
order to obtain the diagram of order i + 1. Its space
complexity for each iteration is O(i2(n− i)), since the
order-i diagram has O(i(n − i)) regions and for each
of which i inducing points are stored. Meanwhile,
the algorithm’s time complexity has been improved
to O(n log n + nk2) by Aggarwal et al. [2], whose
algorithm can delete one point site from a Voronoi di-
agram and recompute the resulting one in linear time.
The iterative approach of Lee’s algorithm (trans-

forming the diagram of order i into the diagram of

123

21st European Workshop on Computational Geometry, 2005

order i + 1) is mainly based on the following idea:
Each Voronoi region r of order i, which is induced
by some H ⊂ S with |H| = i, is partitioned into
subregions which are the respective locus of points
with the same i + 1 neighbors in S. Since all points
of r share the same i nearest neighbors (namely the
points in H), what remains to be done is to partition
r into subregions according to their nearest neighbor
in S\H. This partitioning procedure works by merg-
ing V1(S\H), the ordinary Voronoi diagram of the
remaining n − i + 1 points, appropriately with r (cf.
Lee [17] for details).

2 The PRAM algorithm

As Lee has shown [17, p. 482], two adjacent regions
of a Voronoi diagram of order i share i − 1 of their i
nearest neighbors. When partitioning such a region r
according to V1(S\H), it is split into regions w.r.t. to
the (i + 1)-nearest neighbors of r (i.e. the (possibly)
different (i + 1)-nearest neighbors of different points
in r). The key observation is that only few additional
information is required to do this.

Lemma 1 The i + 1-nearest neighbors of a region r
of Vi(S) all induce adjacent regions of r.

Proof. Points on Voronoi edges of order i share the
same i + 1 nearest neighbors because they have not
only one, but two i-nearest neighbors. If r is induced
by the point set H, then its edges are induced by H
and one additional point each. This point induces the
adjacent region whose boundary the respective edge
is part of. �

Corollary 2 In order to partition a Voronoi region r
of order i into subregions of order i+1, it is sufficient
to know r’s neighboring regions of order i (and their
inducing points).

This locality property is obviously useful for a
parallel version of Lee’s algorithm. Following its
scheme, the problem mainly consists of partitioning
each order-i region into subregions of order i+ 1 and
merging equivalent subregions. To do this for some
region r, one only needs to know the points which
induce the regions adjacent to r.
For the PRAM algorithm we therefore compute for

each order-i region r that part of V1(S\H) (the or-
dinary Voronoi diagram of S without the points that
induce r) which contributes to r. This can be done
using the algorithm developed by Amato et al. [3],
which requires O(log2 n) time and O(n log n) work on
a EREW-PRAM to compute the Voronoi diagram of
n sites in the plane. After that, only some minor up-
date operations have to be performed to complete one
iteration and obtain the order-(i+ 1) diagram.
More formally we state the algorithm as follows:

Input: Planar point set Sn, p ≤ n processors, k
Output: Order-k Voronoi diagram of S

1. Use Amato et al.’s algorithm [3] to compute the
Voronoi diagram of S.

2. FOR i := 1 TO k − 1 DO
/* Transform the diagram of order i into one of
order i+ 1 */

(a) FOR EACH region rj PARDO

i. Partition rj induced by Hj ⊂ S
into subregions according to V1(S\Hj),
which is computed by Amato et al.’s al-
gorithm.

(b) FOR EACH new region rm not updated yet
PARDO

i. Update rm by merging it with equiva-
lent subregions and deleting old edges
within the merged region.

Theorem 3 The family of all order-(≤ k) Voronoi
diagrams can be computed on a CREW-PRAM using
O(k log2 n) time and O(k2n log n) work.

Proof. Recall that an order-i Voronoi diagram has
O(i(n − i)) regions. If an rj of them has sj edges,
we need to compute the ordinary Voronoi diagram of
sj points. The total amount of work per outer iter-
ation is therefore

∑ k(n−k)
j=1 sj log sj = kn log n. (The

parallel merging/deleting loop requires only constant
time and a linear amount of work.) Since one region
can have at most O(k(n − k)) edges, the algorithm
takes O(log2(k(n − k)) = O(log2 n) time for each of
the k − 1 iterations. For this method, no concurrent
write operations are necessary, but concurrent read
operations are. �

Unfortunately, the work complexity does not match
the improved sequential running time. For this, a
parallel algorithm comparable to Aggarwal et al.’s se-
quential one [2] that deletes one site from an existing
Voronoi diagram and can recompute the new one us-
ing a linear amount of work, would be necessary.

3 The CGM algorithm

We use now the locality property explained in the
previous section to develop a coarse-grained parallel
algorithm for the problem within the (slightly modi-
fied) CGM model [11]. The original CGM model con-
sists of p processors connected by some arbitrary net-
work, with each processor having a local memory of
size O(n

p). Interprocessor communication is realized
by message passing in communication rounds, dur-
ing which no processor can send or receive more data
items than fit into its local memory.

124

EWCG 2005, Eindhoven, March 9–11, 2005

It was shown by Dehne et al. [11] that many collec-
tive communication primitives can be simulated on a
CGM by a constant number of global sort operations.
Moreover, Goodrich proved [14] that coarse-grained
sorting can be performed optimally within a constant
number of communication rounds if n

p ≥ p.
For our algorithm we slightly modify the model by

increasing the local memory bound to O(k2(n−k)
p),

which is the space complexity of the sequential al-
gorithm divided by the number of processors.
The ordinary Voronoi diagram of the point set S

is part of the input of our algorithm.1 This diagram
of order 1 must have the property to be x-disjoint,
i.e. it is stored in such a way that S is distributed
on the processors within disjoint intervals w.r.t. the
x-coordinate. This enables a processor to determine
efficiently which other processor stores a particular
point site. (If the diagram is not x-disjoint, it can be
made so via a constant number of global sort opera-
tions.)

The algorithm works as follows:
Input: CGM(n, p) with n

p ≥ p and O(
k2(n−k)

p) local
memory per processor; planar point set S of size n
and its Voronoi diagram, which is distributed on the
p processors in such a way that each processor stores
O(n

p) Voronoi regions and edges; order k of the desired
output.
Output: Vk(S) distributed on the p processors such

that every processor stores O(k(n−k)
p) Voronoi edges

and regions.

1. If V1(S) is not x-disjoint, then it is rearranged
by a constant number of global sorting steps to
make it x-disjoint.

2. Every processor sends the locally stored point
with the largest x-coordinate to all the other pro-
cessors.

With this information every processor determines
by binary search for each boundary region (i.e. a
local Voronoi region with at least one non-local
neighbor region), which other processor stores its
non-local neighbor regions (i.e. regions stored on
other processors that share an edge with a locally
stored region).

3. FOR i := 1 TO k − 1 DO

(a) Each processor sends necessary information
about its boundary regions of order i to the

1The best deterministic CGM algorithm for computing the
Voronoi diagram of arbitrary planar point sets is due to Di-
allo et al. [12] and requires O(n log n log p

p
) local computa-

tion steps and O(log p) communication rounds. Moreover, two
rather complicated randomized CGM algorithms exist, which
both compute the planar Voronoi diagram with high probabil-
ity in optimal time of O(n log n

p
) and with O(1) communication

rounds [10, 16].

processors which store their non-local neigh-
bor regions (if present).

(b) Using Lee’s algorithm [17, p. 482] with the
enhancement by Aggarwal et al. [2], each
processor transforms its local part of Vi(S)
into the corresponding order-i Voronoi dia-
gram.

(c) Since some of the new Voronoi regions are
computed on two processors but are to be
used on only one of them, we proceed as
follows: If i is even, a newly created dupli-
cate region is only retained on the processor
with the lower number, otherwise only on
the processor with the higher number.

Lemma 4 A processor creates at most O(i(n−i)
p)

Voronoi regions of order i + 1 during the transition
from Vi(S) to Vi+1(S).

Proof. An ordinary Voronoi diagram can be dis-
tributed on p processors such that each processor
stores O(n

p) Voronoi regions and edges so that the
claim is true for i = 1. Let us assume now inductively
that it holds for arbitrary i0 ≤ i.
According to our assumption, a processor stores

O(i(n−i)
p) Voronoi regions and edges of an order-i

Voronoi diagram. These local regions can be seen as
an independent sub-diagram, which can be influenced
by at most O(i(n−i)

p) non-local Voronoi regions, since
the local regions cannot have more neighbor regions
than edges. The total number of all these regions is
still O(i(n−i)

p), so that the order-(i + 1) sub-diagram
which is created during the transition, has at most
O((i+1)(n−(i+1))

p) = O(i(n−i)
p) regions. �

Theorem 5 Let a coarse-grained multicomputer
CGM(n, p) with n

p ≥ p and local memory size

O(k2(n − k)) be given and let the Voronoi diagram
of a planar point set S be distributed on CGM(n, p)
such that each processor stores O(n

p) Voronoi re-
gions and edges. Then one can compute the order-
k Voronoi diagram of S with a time complexity of

O(k2(n−k) log n
p) for local computation using O(k) su-

persteps and communication rounds, during which ev-
ery processor sends and receives at most O(k2(n−k))
data items.

Proof. Using corollary 2, we conclude that each pro-
cessor can transform its locally stored Voronoi sub-
diagram of order i into the sub-diagram of order i+1
if it knows all neighbors of its locally stored regions.
This is ensured by the communication in step 3a.
Since all duplicate regions are eliminated in step 3c,
the union of all sub-diagrams forms the Voronoi dia-
gram of order i+ 1 after iteration i.
The communication complexity of the algorithm is

clearly dominated by step 3a, during which at most

125

21st European Workshop on Computational Geometry, 2005

O(i(n−i)
p) Voronoi regions are communicated. (Note

that for each region the number of inducing points
sent/received is not greater than the region’s num-
ber of edges.) This can be accomplished by a total
exchange operation. Hence, no more than O(i(n−i)

p)
points are sent and received during one communica-
tion round.
Furthermore, the local time complexity is domi-

nated by this communication step, too. It requires
in total

∑k−1
i=1 O(

i(n−i) log n
p) = O(k2(n−k) log n

p) local
computation. In contrast to this, the other steps re-
quire only O(n log n

p) (step 1), O(n log p
p) (step 2), and∑k−1

i=1 O(
i(n−i)

p) = O(k2(n−k)
p) (both step 3b and step

3c), respectively.
Clearly, the local memory space bound of

O(k2(n−k)
p) is necessary, but never exceeded. �

4 Conclusion

In this paper we present and analyze a parallel algo-
rithm for constructing higher order Voronoi diagrams
for two parallel models, PRAM and CGM. For both
models we use Lee’s iterative idea [17] to transform
the diagram of order i into one of order i + 1. Al-
though the algorithm is quite simple, it appears to
be the first parallel one for the construction of higher
order Voronoi diagrams.
Two possible improvements could be the object of

further research: First, a parallel algorithm which
deletes a point site from a Voronoi diagram and can
recompute the new one using a linear amount of work.
This would make our PRAM algorithm work-optimal
when compared to Lee’s sequential algorithm.
Secondly, the CGM algorithm is only efficient for

small k. Although small k seem to be more relevant
in practice, it would nevertheless be of interest to ob-
tain a CGM algorithm which requires significantly less
than O(k) communication rounds.

References

[1] P. K. Agarwal, M. de Berg, J. Matoušek,
O. Schwarzkopf. Constructing Levels in Arrange-
ments and Higher Order Voronoi Diagrams. In Proc.
10th Symp. on Comp. Geometry (1994), pp. 67–75.

[2] A. Aggarwal, L. J. Guibas, J. Saxe, P. W. Shor. A
Linear-Time Algorithm for Computing the Voronoi
Diagram of a Convex Polygon. In Discrete & Comput.
Geometry 4 (1989), pp. 591–604.

[3] N. M. Amato, M. T. Goodrich, E. A. Ramos. Parallel
algorithms for higher-dimensional convex hulls. In
Proc. 35th Annual IEEE Symp. on Foundations of
Comp. Science (1994), pp. 683–694.

[4] F. Aurenhammer. A New Duality Result Concerning
Voronoi Diagrams. In Discrete & Comput. Geometry
5 (1990), pp. 243–254.

[5] F. Aurenhammer. Voronoi Diagrams - A Survey of
a Fundamental Geometric Data Structure. In ACM
Comput. Surv. 23 (1991), no. 3, pp. 345–405.

[6] F. Aurenhammer, O. Schwarzkopf. A Simple On-Line
Randomized Incremental Algorithm for Computing
Higher Order Voronoi Diagrams. In Proc. 7th Symp.
on Computational Geometry (1991), pp. 142–151.

[7] J.-D. Boissonnat, O. Devillers, M. Teillaud. A Semi-
Dynamic Construction of Higher Order Voronoi Dia-
grams and its Randomized Analysis. In Algorithmica
9 (1993), pp. 329–356.

[8] T. M. Chan. Random Sampling, Halfspace Range
Reporting, and Construction of (≤ k)-Levels in Three
Dimensions. In SIAM J. Comput. 30 (2000), no. 2,
pp. 561–575.

[9] B. Chazelle, H. Edelsbrunner. An Improved Algo-
rithm for Constructing kth-Order Voronoi Diagrams.
In IEEE Transactions on Computers C-36 (1987),
no. 11, pp. 1349–1354.

[10] F. Dehne, X. Deng, P. Dymond, A. Fabri,
A. A. Khokhar. A Randomized Parallel Three-
Dimensional Convex Hull Algorithm for Coarse-
Grained Multicomputers. In Theory of Computing
Systems 30 (1997), no. 6, pp. 547–558.

[11] F. Dehne, A. Fabri, A. Rau-Chaplin. Scalable paral-
lel computational geometry for coarse grained multi-
computers. In Int. J. Comput. Geometry 6 (1996),
no. 3, pp. 379–400.

[12] M. Diallo, A. Ferreira, A. Rau-Chaplin. A Note On
Communication-Efficient Deterministic Parallel Al-
gorithms for Planar Point Location and 2d Voronoi
Diagram. In Parallel Processing Letters 11 (2001),
no. 2-3, pp. 327–340.

[13] H. Edelsbrunner. Algorithms in Combinatorial Ge-
ometry. Springer-Verlag, 1987.

[14] M. T. Goodrich. Communication-Efficient Parallel
Sorting. In SIAM J. on Computing 29 (1999), no. 2,
pp. 416–432.

[15] J. Gudmundsson, M. Hammar, M. J. van Kreveld.
Higher Order Delaunay Triangulations. In Comp. Ge-
ometry - Theory and Applications 23 (2002), no. 1,
pp. 85–98.

[16] U. Kühn. Lokale Eigenschaften in der algorith-
mischen Geometrie mit Anwendungen in der Paral-
lelverarbeitung. Dissertation Westfälische Wilhelms-
Universität Münster, 1998.

[17] D. T. Lee. On k-nearest neighbor Voronoi diagrams
in the plane. In IEEE Transactions on Computers
31 (1982), no. 6, pp. 478–487.

[18] F. P. Preparata, M. I. Shamos. Computational Ge-
ometry - An Introduction. Springer-Verlag New York,
1985.

[19] E. A. Ramos. On range reporting, ray shooting and
k-level construction. In Proc. 15th Symp. on Compu-
tational Geometry (1999), pp. 390–399.

[20] B. Schaudt. Higher Order Voronoi Dia-
grams: A Java Applet. Website available at
www.msi.umn.edu/˜schaudt/voronoi/voronoi.html.

126

