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Minimizing Local Minima in Terrains with Higher-Order Delaunay
Triangulations
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Abstract

We show that triangulating a set of points with ele-
vations such that the number of local minima of the
resulting terrain is minimized is NP-hard for degener-
ate point sets. The same result applies when there are
no degeneracies for higher-order Delaunay triangula-
tions. Two heuristics are presented to minimize the
number of local minima for higher-order Delaunay tri-
angulations, and they are compared experimentally.

1 Introduction

A fundamental geometric structure in computational
geometry is the triangulation. It is a partitioning of
a point set or region of the plane into triangles. A
triangulation of a point set P partitions the convex
hull of P into triangles whose vertices are exactly the
points of P . There are many different ways in which
one can define the quality of a triangulation of a set
of points. A criterion that is always important for
triangulations is the nice shape of the triangles. This
can be formalized in several ways [2, 3]. In this pa-
per, nice shape is formalized by higher-order Delaunay
triangulations [4]. They provide a class of triangula-
tions that are all reasonably well-shaped, depending
on a parameter k.

Definition 1 A triangle in a point set P is order-k
if its circumcircle contains at most k points of P . A
triangulation of a set P of points is an order-k Delau-
nay triangulation if any triangle of the triangulation
is order-k.

So a Delaunay triangulation is an order-0 Delaunay
triangulation. For any positive integer k, there can be
many different order-k Delaunay triangulations. We
also define the useful order of an edge as the lowest
order of a triangulation that includes this edge.
When using triangulations for terrain modeling, one

should realize that terrains are formed by natural pro-
cesses. This implies that there are linear depressions
(valleys) formed by water flow, and very few local
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minima occur [7]. Local minima can be caused by er-
roneous triangulation: an edge may stretch from one
side of a valley to the opposite side. Such an edge is
an artificial dam, and upstream from the dam in the
valley, a local minimum appears. It is generally an
artifact of the triangulation. Therefore, minimizing
local minima is an optimization criterion for terrain
modeling.

This paper discusses triangulations of a point set P
of which elevations are given. The objective is to tri-
angulate P with an order-k Delaunay triangulation,
such that there are as few local minima as possible.
In Section 2 we show that over all possible triangula-
tions, minimizing local minima is NP-hard. This re-
sult relies heavily on degenerate point sets. For order-
k Delaunay triangulations, NP-hardness can also be
shown for non-degenerate point sets, for k = Ω(nε)
and k = O(n1/4). (For k = 1, an O(n log n) time algo-
rithm that minimizes local minima was given in [4].)
Then we discuss two heuristics for minimizing local
minima. In Sections 3 and 4 we present the flip and
hull heuristics and their efficiency. The latter was in-
troduced before in [4]; here we give a more efficient
algorithm. In Section 5 we apply the two heuristics on
various terrains to examine the possibilities of higher-
order Delaunay triangulations to reduce local minima,
and to test which of the two heuristics is better.

2 NP-hardness

For a set P of n points in the plane, it is easy to
compute a triangulation that minimizes the number of
local minima if there are no degeneracies. Assume p is
the lowest point. Connect every q ∈ P\{p} with p to
create a star network with p as the center. Complete
this set of edges to a triangulation in any way. Since
every point but p has a lower neighbor, no point but
p can be a local minimum. Hence, this triangulation
is one that minimizes the number of local minima.
When many degeneracies are present, minimizing the
number of local minima is NP-hard.

Theorem 1 Let P be a set of n points in the plane,
and assume that the points have elevations. It is NP-
hard to triangulate P with the objective to minimize
the number of local minima of the polyhedral terrain.
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Figure 1: Left, construction for the NP-hardness proof. Square points are in H, cirular points are in P . Right,
NP-hardness for higher-order Delaunay triangulations. Crosses are points at least 4r from the points in P ∪H.

Proof. By reduction from maximum size non-
intersecting subset in a set of line segments [1]. Let
S be any set of n line segments in the plane, and as-
sume all 2n endpoints are disjoint (this can easily be
enforced by extending segments slightly). Let P be
the set of the 2n endpoints. Let ε be the smallest
distance between two points in P . For every point
p ∈ P , let C(p) be a circle centered at p with radius
ε/3. If p′ is the point in P such that pp′ is a segment
of S, then for every q ∈ P\{p, p′}, place a point at
the intersection of pq and C(p). We call these points
shields, because they prevent p and q from being con-
nected by a line segment in any triangulation. Let H
be the set of shields.
We assign elevations as follows. For every segment

in S, one endpoint isassigned elevation 1 and the other
isassigned elevation 2. Every shield in H isassigned
elevation 3. By the choice of shields, every point with
elevation 1 is a local minimum, and no point with
elevation 3 can be a local minimum. A point with
elevation 2 is a local minimum if and only if the seg-
ment from S that connects p′ to the other endpoint
p is in the triangulation. Hence, the maximum non-
intersecting subset of S corresponds one-to-one with
the points with elevation 2 that are local minimum.
Since the number of shields is quadratic, NP-hardness
follows directly. �

Based on the construction in the proof above, we
can show NP-hardness of minimizing the number of
local minima for higher-order Delaunay triangulations
even when no degeneracies are present.

Corollary 2 Let P be a set of n points in the plane
such that no three points of P lie on a line, and assume
that the points have elevations. For any 0 < ε < 1
and some c > 0, it is NP-hard to compute a k-th order
Delaunay triangulation that minimizes the number of
local minima of the polyhedral terrain for nε ≤ k ≤
c · n1/4.

Proof. Start out with the proof of the theorem
above; |P | = 2n and |H| = 2n(2n − 1). Let r be the
radius of the largest (finite) circle that passes through
three points of P ∪H of the construction. Note that r
is at least half of the diameter of P ∪H. Let δ > 0 be
a value chosen such that if three non-colinear points
from P ∪H move over a distance δ, then their circle
has radius at most 2r. Both r and δ can be computed
in cubic time. For every shield h ∈ H, displace it
over a distance d where 0 < d < δ, and such that the
radius of the circle through h and the two points of
P for which h is a shield has radius at least 4r. Place
|P | + |H| + 1 = 4n2 + 1 points inside this circle and
at distance at least 4r from all points in P ∪H. Since
the diameter of P ∪H is at most 2r, this is possible.
These points make sure that the triangulation edge for
which h was a shield, is still not possible in a 4n2-th
order Delaunay triangulation: the useful order of the
triangulation edge is too high. By construction, other
edges between points in P and H are possible. The
extra points get elevation 3 as well, and the problem
of minimizing the number of local minima in 4n2-th
order Delaunay triangulations is again the same as
maximizing the size of a non-intersecting subset of S.
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The number of points in the construction is O(n8).
This gives the proof for k = c · n1/4 for some c > 0.
For smaller values of k we simply place more points
at distance at least 4r. As long as k = Ω(nε) the
construction is polynomial. �

3 The flip heuristic

Given a value of k, the flip heuristic repeatedly tests
whether the diagonal of a convex quadrilateral in the
triangulation can be flipped. It will be flipped if two
conditions hold simultaneously: (i) The two new tri-
angles are order-k Delaunay triangles. (ii) The new
edge connects the lowest point of the four to the oppo-
site point. A flip does not necessarily remove a local
minimum, but cannot create one, and it can make
possible that a later flip removes a local minimum.
Our algorithm to perform the flips starts with the

Delaunay triangulation and k′ = 1, then does all flips
possible to obtain an order-k′ Delaunay triangulation,
then increments k′ and repeats. This continues until
k′ = k.
We first deal with the maximum number of flips

needed, and then we discuss the efficiency of the
heuristic.

Lemma 3 The flip heuristic terminates after at most
O(n2) flips.

Proof. Normalize the heights of the vertices to be in-
tegers in the range 1, . . . , n. Observe that this does
not influence the flipping criterion. Consider the func-
tion F (T ) for a triangulation T :

F (T ) =
∑

uv∈T

min(u, v) .

Any flip decreases F (.) with at least one, and F (.) is
at most O(n2) to begin with. �

Lemma 4 If an edge ab is in the triangulation, then
the flip heuristic will never have an edge cd later with
min(c, d) ≥ min(a, b) that intersects ab.

Proof. Assume without loss of generality that a < b
and c < d. Assume further that a ≤ c, edge ab is
in the triangulation T , and that cd is the first edge
flipped into T that violates the property of the lemma.
Before the flip, c and d must be in a convex quadrila-
teral where c is the lowest point of the four. The other
two points, f and g, cannot be a because a is lower
by assumption. Possibly, f or g is the same as b. The
quadrilateral has edges cf, cg, df, dg, and two of them
intersect ab. But this contradicts the assumption that
cd is the first edge violating the property. �

An immediate consequence of the lemma above is
that an edge that is flipped out of the triangulation

cannot reappear. There are at most O(nk) pairs of
points in a point set of n points that give order-k
Delaunay edges [4]. Therefore, we conclude:

Lemma 5 The flip heuristic to reduce the number of
local minima performs at most O(nk) flips.

To implement the flip heuristic efficiently, we main-
tain the set of all convex quadrilaterals in the current
triangulation, with the order of the two triangles that
would be created if the diagonal were flipped. The
order of a triangle is the number of points in the cir-
cumcircle of the vertices of the triangle. Whenever a
flip is done, we update the set of convex quadrilater-
als. At most four are deleted and at most four new
ones are created by the flip. We can find the order
of the incident triangles by circular range counting
queries. Since we are only interested in the count if
the number of points in the circle is at most k, we
implement circular range counting queries by point
location in the order-k Voronoi diagram [6], taking
O(log n+ k) time per query. We conclude:

Theorem 6 The flip heuristic to minimize the num-
ber of local minima in k-th order Delaunay triangu-
lations on n points takes O(nk2 + nk log n) time.

4 The hull heuristic

The second heuristic for reducing the number of local
minima is the hull heuristic. It was described in Gud-
mundsson et al. [4], and has an approximation factor
of Θ(k2) of the optimum. The hull heuristic adds a
useful order-k Delaunay edge if it reduces the number
of local minima. This edge may intersect several De-
launay edges, which are removed; the two holes in the
triangulation that appear are retriangulated with the
constrained Delaunay triangulation. No other higher-
order Delaunay edges will be used that intersect the
two holes. This guarantees that the final triangula-
tion is order-k. It is known that two useful order-k
Delaunay edges in general can give an order-(2k − 2)
Delaunay triangulation [5], which is higher than al-
lowed.
Here we give a slightly different implementation

than in [4]. It is more efficient for larger values of
k. Also, we include the adaptation that useful lower-
order Delaunay edges are inserted first.
Assume that a point set P and an order k are given.

We first compute the Delaunay triangulation T of P ,
and then compute the set E of all useful k-th order
Delaunay edges, as in [4], in O(nk log n + nk2) time.
There are O(nk) edges in E, and for each we have the
lowest order k′ ≤ k for which it is a useful order-k′

Delaunay edge.
Next we determine the subset P ′ ⊆ P of points that

are a local minimum in the Delaunay triangulation.
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0 1 2 3 4 5 6 7 8 9 10

Calif. Hot Springs 47/47 43/43 33/31 29/26 25/20 24/19 23/18 21/18 18/16 18/16 17/15
Wren Peak 45/45 37/37 31/31 27/27 24/22 23/21 21/20 19/20 19/20 19/19 19/17
Quinn Peak 53/53 44/44 36/36 31/29 26/25 24/23 23/21 21/20 20/19 20/19 19/17
Sphinx Lakes 33/33 27/27 22/22 20/19 19/18 17/16 15/12 12/9 11/9 9/8 9/8
Split Mountain 24/24 17/17 14/14 9/9 9/9 9/9 8/8 7/8 6/7 6/6 5/4

Table 1: Results of the flip/hull heuristic for orders 0–10.

Then we determine the subset E′ ⊆ E of edges that
connect a point of P ′ to a lower point. These steps
trivially take O(nk) time.
Sort the edges of E′ by non-decreasing order. For

every edge e ∈ E′, traverse T to determine the edges
of T that intersect e. If any one of them is not a De-
launay edge or is a marked Delaunay edge, then we
stop and continue with the next edge of E′. Other-
wise, we remove all intersected Delaunay edges and
mark all Delaunay edges of the polygonal hole that
appears. Then we insert e and retriangulate the two
polygons to the two sides of e using the Delaunay tri-
angulation constrained to the polygons. We also mark
these edges. Finally, we remove some edges from E′.
If the inserted edge e made that a point p ∈ P is
no longer a local minimum, then we remove all other
edges from E′ where p is the highest endpoint.
Due to the marking of edges, no edge e ∈ E′ will be

inserted if it intersects the hull of a previously inserted
edge of E′. Also note that every edge of E′ is treated
in O(k) time. We conclude:

Theorem 7 The hull heuristic to minimize the num-
ber of local minima in k-th order Delaunay triangu-
lations on n points takes O(nk2 + nk log n) time.

5 Experiments

Table 1 shows the number of local minima obtained
after applying the flip and hull heuristics to five differ-
ent terrains. The terrains roughly have 1800 vertices.
The vertices were chosen by random sampling from el-
evation grids with about 100 times more points than
the chosen sets.
The values in the table show that higher-order

Delaunay triangulations indeed can give significantly
fewer local minima than the standard Delaunay tri-
angulation (0-th order). This effect is already clear at
low orders, indicating that indeed, many local min-
ima of Delaunay triangulations are caused by having
chosen the wrong edges for the terrain (interpolation).
The difference in local minima between the flip and

hull heuristics shows that the hull heuristic usually is
a bit better, but there are some exceptions.
To test how good the results are, we also tested how

many local minima of each terrain cannot be removed
simply because there is no useful order-k Delaunay

edge possible to a lower point. It turned out that
the hull heuristic found the optimal order-k Delaunay
triangulation in nearly all cases. Only in six cases we
cannot be sure: there was one local minimum left that
could potentially be removed.

6 Further research

It remains to be discovered whether minimizing the
number of local minima in order-k Delaunay trian-
gulations is already NP-hard for smaller values of k.
This is unknown for k ≥ 2 but significantly less than
nε, for any small constant ε > 0.
Another topic for further investigation is the re-

moval of other artifacts from terrains. For exam-
ple, for drainage applications, it is important to have
the drainage network coincide with the triangulation
edges, and not go over the middle of triangles.
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