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Abstract

The efficiency of an online motion planning algorithm
often is measured by a constant competitive factor
C. Competitivity means, that the cost of an C-
competitive online strategy with incomplete informa-
tion is only C times worse than the optimal offline
solution with full information. If a strategy is rep-
resented by an infinite sequence X = f1, f2, . . ., the
problem of finding a strategy with minimal C often
results in minimizing functionals Fk in X. There are
two main paradigm for finding an optimal sequence
f1, f2, . . . that minimizes Fk for all k. Namely, op-
timality of the exponential function and equality ap-
proach. If the strategy has to be defined by more
than one interacting sequence both approaches may
fail. We show a simple motion planning example with
two interacting sequences and present its solution.

1 Introduction

Search games, i. e. games where two players, a
searcher and a hider, compete with each other, are
studied in many variations in the last 60 years since
the first work by Koopman in 1946. For example,
Bellman [3] introduced the search for an immobile
hider located on the real line with a known probability
distribution, Gal [5] and independently Baeza-Yates
et. al. [2] solve this problem for a uniformly distributed
location of the hider. The book by Gal [5] and the
reissue by Alpern and Gal [1] gives a comprehensive
overview on results on search games.
The length of the searcher’s trajectory is often used

as payoff of a search game. To get a finite value for
the game, we use the competitive framework, that
is, we compare the length of the searcher’s trajectory
to the shortest distance to the hider. Gal [5] calls
this a normalized cost function. More precisely, we
call a search strategy competitive with a factor C, if
|π| ≤ C · |πopt| holds for every location of the hider,
where |π| denotes the length of the searcher’s path and
|πopt| the shortest path. The competitive framework
was introduced by Sleator and Tarjan [15], and used in
many settings since then, see for example the survey
by Fiat and Woeginger [4] or, for the field of online
robot motion planning, see the surveys [12, 8].
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In most settings, a search strategy, X, can be given
by a sequence of values f1, f2, f3, . . . denoting e. g.
the exploration depth in the i-th iteration step, and
the competitive factor can be given by a functional
Fk(X), where k denotes the number of iteration steps.
Since we want to minimize the costs, we have to find
a strategy that minimizes Fk. There are two com-
monly used methods to find such a strategy. The
first is, to show that the functionals Fk fulfill certain
conditions—see below. Gal [5] showed, that a strat-
egy with fi = ai minimizes the Fk’s, and we have just
to find an appropriate a using simple analysis. An-
other method is, to show that there is a strategy X ′

that achieves the optimal competitive factor, C, not
only asymptotically, but exactely in every step. With
this we establish a closed form for X ′. Both methods,
however, work well for strategies that can be given by
one sequence fi. If we have search games that rely on
more than one parameter, the theorem by Gal may
not be applicable and the equality approach may fail.

We introduce a variation of the search for a goal
on an infinite line: the goal is located on two rays
emanating from the searcher’s origin, with an angle
γ between the rays. The searcher can move in the
free space between the two rays, and finds the goal
as soon as it reaches the goals position or a position
behind the goal, seen from the origin. A reasonable
strategy to solve this problem can be described by two
sequences, αi and βi, see Figure 1.
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Figure 1: Representation of a strategy with two se-
quences.
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2 Exponential function and equality approach

A strategy for searching an unknown goal on an in-
finite ray can be represented by an infinite sequence
F = f1, f2, . . . of positive values. The agent moves
f1 steps to the left of the start, returns to the goal,
moves f2 steps to the right of the start point, returns
to the goal and so on. The worst-case for the com-
petitive factor occurs, if we miss the goal at step k
by an ε, return to the start, move fk+1 to the other
direction, return to the start and find the goal in the
(k + 2)-th step at distance fk + ε. Thus, the worst-

case factor is given by 2
∑k+1

i=1 fi+fk
fk

= 1 + 2
∑k+1

i=1 fi
fk

,
and it suffices to find a sequence X = f1, f2, . . . that
minimizes Fk(f1, f2, . . .) :=

∑k+1
i=1 fi
fk

for all k. Note,
that we additionally have to take care for the first
movement. We assume that the goal is at least one
step away from the start which gives the additional
inequality 2f1 ≤ C · 1.
Let F (X) := limk→∞ Fk(X) more precisely, we are

searching for a strategy X with

inf
Y
sup

k
Fk(Y ) = C and sup

k
Fk(X) = C .

Two main approaches for solving the given problem
are discussed in the literature. We briefly repeat the
main ideas.

Optimality of the exponential function: The
functional Fk is continous and unimodal. Unimodal-
ity is defined by Fk(A ·X) = Fk(X) and Fk(X+Y ) ≤
max{Fk(X), Fk(Y )} for every constant A and two se-
quences X and Y . Unimodality means that scalar
multiplication and the addition of two sequences does
not increase the value of the functional.
If Fk additionally fulfills some other reasonable

properties, it was shown by [1, 5, 14] that an expo-
nential function minimizes Fk, or more precisely

sup
k
Fk(X) ≥ inf

a
sup

k
Fk(Aa)

where Aa = a0, a1, a2, . . . and a > 0. Altogether, the
problem of searching a point on a line is solved by

inf
a

∑k+1
i=1 a

i−1

ak−1
=

22

2− 1 = 4 .

Equality approach: On the other hand some au-
thors [7, 10, 11, 9, 13] suggest to adjust an optimal
strategy X = f1, f2, . . . with Fk(X) ≤ C to an op-
timal strategy X ′ = f ′1, f

′
2, . . . with Fk(X ′) = C

where C is the (probably unknown) best achievable
factor. It can be shown that for the 2-ray search
problem such a strategy X ′ exists. The main rea-
son is that Fk =

∑k
i=1 fi
fk

increases in fk and Fl de-
crease in fk for all l %= k . Therefore we can induc-
tively adjust a given optimal strategy X. How will
we find the optimal strategy? One will try to retrieve

a recurrence for the values of X ′ from the equation
Fk(X ′) = C = Fk+1(X ′)
For the 2-ray search problem we assume that X =

f1, f2, . . . achieves equality in every step. Thus,
we have

∑k+2
i=1 fi = Cfk+1 and

∑k+1
i=1 fi = Cfk.

Subtracting both sides gives the recurrence fk+2 =
C(fk+1− fk) for k = 1, 2, . . . Obtaining positive solu-
tions for recurrences can be solved by analytic means,
see [6]. It can be shown that for C < 4 there is
no positive sequence that fulfills the given recurrence
fk+2 = C(fk+1− fk). Additionally, for fi := (i+1)2i

we have fk+2 = (k + 3)2k+1 = 4(fk+1 − fk) =
(3k + 4)2k+2 − (k + 1)2k+2 and C = 4 is optimal.
Altogether, we have two optimal solutions stem-

ming from different paradigm. In the following we
will combine both paradigm in order to solve more
sophisticated functionals.

3 A simple online problem

We discuss a variant of the 2-ray search problem. We
are searching for a target on 2-rays r1 and r2, ema-
nating from a single source s and building an angle
γ, Figure 1. It is allowed to move in the plane from
one ray to the other. A target t at distance |st| on
ray ri can be detected, if we visit a point p on ri with
|pt| ≥ |st|. Therefore a search strategy need not visit
all points on the ray. We denote the problem as the
2γ-ray-scan problem. The distance to the goal and
the goal’s ray is not known in advance. The best of-
fline strategy moves directly along the corresponding
ray to the goal.
[2, 1] dicuss a similar variant without looking back,

the goal is detected only if the goal is visited. This
variant can be described by a single sequence and was
solved in [1] with an exponential function.
A strategy for the 2γ-ray-scan problem can be rep-

resented as follows. We start with ray r1 and move
along it for a while up to distance β0. Then we will
move on a straight line to a point at distance α1 on
ray r2 and move along r2 for a while until leaving the
ray at distance β1 and so on. Altogeher, we have a
sequence of leave points and a sequence of hit points
and we denote every hit point by its distance αi and
every leave point by its distance βi, see 1. For conve-
nience, we set α0 = 0. A reasonable strategy fulfills
βi−2 ≤ αi ≤ βi.
The worst-case for the competitive factor occurs, if

we miss the goal by an ε on the first ray, move to the
second ray and find the goal after returning back to
the first ray. Setting α0 = 0 we have to minimize the
following functional

Gk([(α0, α1, . . .), (β0, β1, . . .)] :=∑k+1
i=0 βi−αi+

√
α2

i+1 − 2αi+1βi cos γ+β2
i

βk
.
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One can proof the optimality of a exponential func-
tion for βi by showing the prerequisites in [5, 1, 14].

Theorem 1 If there exists a strategy X =
[(α0, α1, . . .), (β0, β1, . . .)] such that

inf
Y
sup

k
Gk(Y ) = C and sup

k
Gk(X) = C,

then there is always a solution Z =
[(α0, α1, . . .), (1, β1, β2, . . .)] so that

inf
Y
sup

k
Gk(Y ) = C and sup

k
Gk(Z) = C .

Proof. We show that the unimodality condition
holds, the other prerequisites are easily fulfilled.
Scalar multiplication is simply satisfied.
It suffices to show that

√
a2

i+1 − 2ai+1bi cos γ + b2i+√
c2i+1 − 2ci+1di cos γ + d2

i is bigger than√
(ai+1 + ci+1)2 − 2(ai+1 + ci+1)(bi + di) cos γ+
+ (bi + di)2 which is the triangle inequality for
the vectors ((ai+1 − bi) cos(γ/2), (ai+1 + bi) sin(γ/2))
and ((ci+1 − di) cos(γ/2), (ci+1 + di) sin(γ/2)).
Now, let Gk([(a0, . . .), (b0, . . .)]) ≤ D and

Gk([(c0, . . .), (d0, . . .)]) ≤ D then we have∑k+1
i=0 bi − ai +

√
a2

i+1 − 2ai+1bi cos γ + b2i+

+
∑k+1

i=0 ci−di+
√
c2i+1 − 2ci+1di cos γ + d2

i ≤ D(bk+
dk) and the left-hand side of the inequality is
greater than or equal to

∑k+1
i=0 (bi + di) − (ai +

ci)
√
(ai+1 + ci+1)2 − 2(ai+1 + ci+1)(bi + di) cos γ+

+ (bi + di)2 which completes the proof. �

Unfortunately, this result will not give us a strategy
because there is a second sequence. We still have to
optimize
Gk([(α0, α1, . . .), β]) :=∑k+1

i=0 β
i − αi+

√
α2

i+1 − 2αi+1βi cos γ+β2
i

βk

On the other hand if we can show that there is a
strategy with Gk([(α0, α1, . . .), (β0, β1, . . .)]) = C for
all k > l, the subtraction of two equations

k∑
i=0

βi − αi +
√
α2

i+1−2αi+1βi cos γ + β2
i = Cβk−1

and
k+1∑
i=0

βi−αi+
√
α2

i+1−2αi+1βi cos γ+β2
i = Cβk

results in a recurrence

βk+1 − αk+1 +
√
α2

k+2−2αk+2βk+1 cos γ + β2
k+1

= C(βk − βk−1) .
Unfortunately, this is a non-linear recurrence and can-
not be solved easily.

4 Combining two paradigms

We suggest to combine both approaches. First, we
show that at least for γ ≤ π/2 there is indeed a strat-
egy [(α0, α1, . . .), (β0, β1, . . .)] so that

∑k+1
i=0 βi − αi +√

α2
i+1 − 2αi+1βi cos γ + β2

i = Cβk for all k ≥ 1.
Then we make use of the subtraction idea above

and obtain C =
(

1
βk−βk−1

)(
βk+1 − αk+1

+
√
α2

k+2 − αk+2βk+12 cos γ + β2
k+1

)
(1)

which again gives a functional but without a sum in
the denominator. Now, we solve this functionals by
showing that the prerequisites of the exponential so-
lution is again fulfilled.

Lemma 2 For γ ≥ π
2 there is always an optimal so-

lution X = [(α0, α1, . . .), (β0, β1, . . .)] that achieves∑k+1
i=0 βi−αi+

√
α2

i+1 − 2αi+1βi cos γ + β2
i = Cβk for

all k ≥ 0.

Proof. We show the property by induction. We ad-
just a given strategy [(α0, α1, . . .), (β0, β1, . . .)] to a
strategy [(α0, α1, . . .), (β′0, β

′
1, . . .)] such that all β

′
i de-

crease but are still positive.
For k = 0 we may have

∑2
i=0 βi − αi +√

α2
i+1 − 2αi+1βi cos γ + β2

i < Cβ0 for the optimal C.
Thus, we decrease β0 to β′0 := β0 − ε until we obtain
equality. The distance

√
α2

1 − 2α1β0 cos γ + β2
0 de-

creases for γ ≥ π
2 and Gk([(α0, α1, . . .), (β′0, β1, . . .)])

gets smaller for all k > 1. β′0 is positive since we have
to subsume the distance from β1 to α2 > β0.
Now let us assume that the property holds for all

l ≤ k − 1 and let Gk([(α0, α1, . . .), (β′0, β
′
1, . . .)]) < C.

We again can decrease βk to β′k := βk − ε until we
have equality. For αk < βk we decrease the denom-
inator of Gl([(α0, α1, . . .), (β′0, β

′
1, . . .)]) for all l ≥ k

and for k − 1 but not for l ≤ k − 2. Note, that√
α2

k+1 − 2αk+1βk cos(γ) + β2
k decreases for γ ≥ π

2 . If
αk = β′k is reached, we additionally decrease the de-
nominator for l = k− 2. Note, that this is true, since
for γ ≥ π

2 the distances
√
α2

k+1 − 2αk+1β′k cos γ + β
′2
k

and
√
β′2k − 2β′kβk−1 cos γ + β2

k−1 decrease.
Finally we will achieve equality for

Gk([(α0, α1, . . .), (β′0, β
′
1, . . .)]) with β

′
k. β

′
k is positive,

since we have to subsume the distance βk+1 to αk+2.
Unfortunately, Gl([(α0, α1, . . .), (β′0, β

′
1, . . .)]) < C

may hold for l = k − 2 and l = k − 1. By in-
duction hypothesis, we adjust the strategy again
such that Gl([(α0, α1, . . .), (β′0, β

′
1, . . .)]) = C for

all l ≤ k − 1. Now it again may happen that
Gk([(α0, α1, . . .), (β′0, β

′
1, . . .)]) < C holds.
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We repeat the above process, since the vector
(β′0, β

′
1, . . . , β

′
k) always decrease by construction but

still remain positive, the vector (β′0, β
′
1, . . . , β

′
k) finally

has to run into a positive limit that fulfills equal-
ity. �

Note, that for the equality strategy we still have
βk−2 ≤ αk ≤ βk. The functional (1) for k ≥ 1 fulfills
the criterion for the exponential function which can
be proven by the same arguments as in the proof of
Theorem 1.

Lemma 3 Functional (1) can be optimized by an ex-
ponential function, that is, there is an optimal strat-

egy with factor
(

1
βk−βk−1

)(
βk+1 − αk+1+

+
√
α2

k+2 − 2αk+2βk+1 cos γ + β2
k+1

)
.

Now we can set αi = Ciβ
i for Ci ∈ [1, 1

β2 ] and it
remains to optimize

β2
(
1− Ci +

√
(Ci+1β)2 − 2Ci+1β cos γ + 1

)
β − 1

for β and Ci and Ci+1. In the next iteration step Ci+1

takes over the role of Ci. Therefore the best we can
do is that we fix Ci by a constant D which means that
we have to optimize

β2
(
1−D +

√
(Dβ)2 − 2Dβ cos γ + 1

)
β − 1

for β and D ∈ [1, 1/β2].

Theorem 4 The strategy for the 2γ-ray-scan prob-
lem for γ ≥ π/2 can be achieved by minimizing

f(β, γ,D) :=
β2

(
1−D+

√
(Dβ)2 − 2Dβ cos γ+1

)
β − 1

over β and D ∈ [1, 1/β2].

It can be shown that there is a reasonable D(γ, β)
that minimizes f(β, γ,D). IfD(γ, β) is inside [1, 1/β2]
then we have to compare the minima over β forD = 1,
D = 1/β2 and D = D(γ, β). D = 1/β2 represents
a strategy without any gaps. D = 1 represents a
strategy that does not slip along the rays and D =
D(γ, β) represents something in between.
For example for γ = π/2 we can show that

f(γ, β,D(γ, β)) =
β2

(
1− 1√

−1+β2β
+
√

1
−1+β2 + 1

)
β − 1

which is minimal for β = 1.839 . . . and D =
0.352 . . . ∈ [1, 0.295 . . .]. The optimal competitive fac-
tor is given by 7.413 . . . wheras the optimal factor for
D = 1/β2 is 7.472 . . .
For γ = π we obtain the normal doubling strategy,

which is represented by β = 2 and D = 1/4.

5 Conclusion

We have shown that for solving a double sequence
functional it is useful to combine the methods of
equality approach and the optimality of the expo-
nential function. With the help of multi-sequence
functionals more sophisticated strategies can be rep-
resented. We think that the presented method can
be extended to functionals with more than two se-
quences and that it should be possible to iterate the
combination process more than once.
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