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Approximation Algorithm for the L1-Fitting Circle Problem

Sariel Har-Peled∗

Abstract

In this paper, we study the problem of L1-fitting a
circle to a set of points in the plane, where the tar-
get function is the sum of distances of the points to
the circle. We show an (1 + ε)-approximation al-
gorithm, with running time O(n + poly(log n, 1/ε)),
where poly(log n, 1/ε) is a constant degree polynomial
in log n and 1/ε. This is the first subquadratic algo-
rithm for this problem.

1 Introduction

Motivated by a variety of applications, considerable
work has been done on measuring various descriptors
of the extent of a set P of n points in ;d. We refer
to such measures as extent measures of P . Roughly
speaking, an extent measure of P either computes cer-
tain statistics of P itself or it computes certain statis-
tics of a (possibly nonconvex) geometric shape (e.g.
sphere, box, cylinder, etc.) enclosing P . Examples
of the former include computing the kth largest dis-
tance between pairs of points in P , and the examples
of the latter include computing the smallest radius of
a sphere (or cylinder), the minimum volume (or sur-
face area) of a box, and the smallest width of a slab
(or a spherical or cylindrical shell) that contain P .
Shape fitting, a fundamental problem in compu-

tational geometry, computer vision, machine learn-
ing, data mining, and many other areas, is closely
related to computing extent measures. A widely used
shape-fitting problem asks for finding a shape that
best fits P under some “fitting” criterion. A typi-
cal criterion for measuring how well a shape γ fits
P , denoted as µ(P, γ), is the maximum distance be-
tween a point of P and its nearest point on γ, i.e.,
µ(P, γ) = maxp∈P minq∈γ d(p, q). This is the L∞-
fitting problem1. Here, one can define the extent mea-
sure of P to be µ(P ) = minγ µ(P, γ), where the mini-
mum is taken over a family of shapes (such as points,
lines, hyperplanes, spheres, etc.). For example, the
problem of finding the minimum radius sphere (resp.
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1The L∞-fitting comes from considering the distance of ev-
ery point to the shape being a coordinate in a vector, and what
metric we apply to this vector.

cylinder) enclosing P is the same as finding the point
(resp. line) that fits P best, and the problem of finding
the smallest width slab (resp. spherical shell, cylindri-
cal shell) is the same as finding the hyperplane (resp.
sphere, cylinder) that fits P best.
The exact algorithm for computing extent measures

are generally expensive, e.g., the best known algo-
rithms for computing the smallest volume bounding
box containing P in ;3 require O(n3) time. Conse-
quently, attention has shifted to developing approxi-
mation algorithms [BH01, ZS02]. A general appro-
ximation technique was recently developed for such
problems by Agarwal et al. [AHV04]. This implies
among other things that one can (1+ ε)-approximate
the circle best L∞-fit a set of points in the plane
in O(n + 1/εO(1)) time (see [AAHS00] and [Cha02]
and references therein for more information about this
problem).
The main problem of the L∞ measure in shape fit-

ting is that it is very sensitive to outliers. Namely,
a single outlying point can change the price of the
optimal solution dramatically. There are two natural
solutions. The first approach, is to change the target
function to be less sensitive to outliers. For example,
instead of considering the maximum distance, one can
consider the sum of distances (i.e., L1-fitting), or the
sum of squared distance (i.e., L2-fitting). The L2-
fitting in the case of a single linear subspace is well
understood, and is no more than SVD (singular value
decomposition). Fast approximation algorithms are
known for this problem, see [FKV98, RVW04] and
references therein. As for the L1-fitting, this problem
can be solved using linear programming techniques, in
polynomial time in high dimensions, and linear time
in constant dimension [YKII88]. Recently, Clarkson
gave a faster algorithm for this problem [Cla05] which
works via sampling.
The problem seems to be harder once the shape

considered is not a linear subspace. There is consid-
erable work on nonlinear regressions (i.e., extension
of the least squares technique) for various shapes, but
there not seems to be a guaranteed approximation al-
gorithms for the circle case [SW89]. The hardness in
the L1-fitting of a circle seems to rise from the tar-
get function is a sum of terms, each term being an
absolute value of a difference of a square root of a
polynomial and a radius. It seems doubtful that ana-
lytical solution would exist for such a target function,
as it is related to the Fermat-Weber problem [Wes93].
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The second approach, is to specify the number k
of outliers in advance, and find the best shape L∞-
fitting all but k of the input points. Har-Peled and
Wang showed that there is a coreset for this problem
[HW04], and as such it can be (1 + ε)-approximated
in O(n + poly(k, log n, ε)) time, for a large family of
shapes. The work of Har-Peled and Wang was mainly
motivated by trying to solve the problem of L1-fitting
a circle to a set of points.
In this paper, we describe an (1+ε)-approximation

algorithm for the L1-fitting of a circle to a set of
points in the plane. The solution has running time
of O(n + poly(log n, 1/ε)), and the result is correct
with high probability. The only previous algorithm
for this problem we are aware of, is due to Har-Peled
and Koltun [HK04a], and it works in O(n2ε−2 log2 n)
time.
Due to extreme space limitations, we only provide

a sketch of the paper. A full version of this paper is
available from the author’s webpage http://www.uiuc.
edu/~sariel/papers/05/l1_fitting/.

2 Approximate L1 Fitting of a Circle to a Set of
Points

2.1 Solution Outline.

The problem of best L1-fitting a circle to a set of
points in the plane, is equivalent to finding the points
in 3D the minimizes the sum of distances to a set of
cones.
As such, our solution is based on two steps. In the

first step, we compute a small set of levels, and assign
weights to them, such that solving the problem on
those (weighted) levels would be equivalent to solv-
ing the problem on the original arrangement of cones.
Unfortunately, this is by itself insufficient, as those
levels by themselves might be of high complexity, and
computing them would be prohibitly expensive. To
this end, we replace the exact level by approximate
level, using random sampling. This ensures that each
such level is a shallow level (in the appropriate ran-
dom sample).
This still fall short of solving the problem, because

even a shallow level might have high complexity. As
such, we simplify those levels in such a way that pre-
serves the sum of vertical distances. The last step
is done by applying a recent result of Har-Peled and
Wang [HW04] that shows that one can do such a sim-
plification, and it is of small size.
In the end of this process, we have a weighted ar-

rangement of surface patches of small size (say, of
complexity O(poly(1/ε, log n))), such that we need
to solve the problem in this arrangement. We can
now solve the problem by using an reasonably effi-
cient brute force approach. Indeed, we decompose
the arrangement into vertical slabs where a vertical

line intersect the surfaces in the same order. We need
to solve the problem inside this prism. In the original
settings, this corresponds to a (small) weighted set of
points, where we want to best fit them to a circle. We
use a slow (cubic time) approximation algorithm to
do that.

2.2 Warmup Exercise – Slow Approximation

Lemma 1 Let G be a set of n weighted cones in ;3

with total weightW , and ε > 0 a parameter. One can
find a point p ∈ ;3 such that, νG(p) ≤ (1 + ε)νopt(G),
where νopt(G) is the price of the global minimum. The
running time is O(n3poly(logW, ε−1)).

The same running time holds, if the feasible re-
gion is restricted to a region of constant complexity
of space.

2.3 Second Warmup Exercise – the One Dimen-
sional Case

In this section, we consider the one dimensional prob-
lem of approximating the distance function of a point
x to a set of points Z = 〈z1, z2, . . . , zn〉, where z1 ≤
z2 ≤ . . . ≤ zn. Formally, we want to approximate
the function νZ(z) =

∑
zi∈Z |zi − z|. This is no more

than the one median function for those points on the
line. This corresponds to a vertical line in three di-
mensions, where each zi represents the intersection of
the vertical line with the surface γi. The one dimen-
sional problem is well understood, since it is no more
than the 1-median problem, and there exists a coreset
for it, see [HM04, HK04b]. Unfortunately, it is un-
clear how to perform the operations that corresponds
to those coreset construction in a global fashion, so
that the construction would hold for all vertical lines.
Our first step, is to do chunking. Formally, we par-

tition Z symmetrically into subsets, such that the size
of the subsets increase in size as one comes toward the
middle of the set. Formally, the set Li = {zi} con-
tains the ith point on the line, for i = 1, . . . ,M , where
M ≥ 10/ε is a parameter to be determined shortly.
Similarly, Ri = {zn−1+1}, for i = 1, . . . ,M . Next, let
αM = M , and let αi+1 = min(�(1 + ε/10)αi , n/2),
for i = M, . . . , N , where αN is the first number
in this sequence equal to n/2. Now, let Li ={
zαi−1+1, . . . , zαi

}
and Ri =

{
zn−αi−1 , . . . , zn−αi+1

}
,

for i = M + 1, . . . , N . Consider the partition of Z
formed by L1, L2, . . . , LN , RN , . . . , R2, R1. Clearly,
this is a partition of Z into “exponential sets”. The
margin M sets on the boundary are singletons, and
all the other sets grow exponentially in cardinality, till
the cover the whole set Z.
We next pick a point an arbitrary point li ∈ Li and

ri ∈ Ri, and we also assign weight |Ri| = |Li| to each
such point. for i = 1, . . . , N . Let S be the resulting
weighted set of points. We claim that this is a coreset
for the 1-median function.
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Lemma 2 Let A be a set of n real numbers,
and let a be any number of A. We have that
|νA(z)− |A|‖az‖| ≤ νA(a).

Lemma 3 νZ(z) ≈ε/5 νS(z), for any z ∈ ;.

Next, we “slightly” perturb the points of the
coreset S. Formally, assume that we have
points l′1, . . . , l

′
N , r

′
1, . . . , r

′
N such that ‖l′ili‖ ,‖r′iri‖ ≤

(ε/20)‖liri‖, for i = 1, . . . , N . Let S′ =
{l′1, . . . , l′N , r′N , . . . , r′1} be the resulting weighted set.
We claim that S′ is still a good coreset.

Lemma 4 νZ(z) ≈ε/3 νS′(z), for any z ∈ ;.

2.4 Additional Tools

2.4.1 Approximating a Level by a Shallow Level in
a Random Sample

Lemma 5 Let G be a set of n surfaces in ;d, ε > 0,
and let k be a number between 0 and n/2. Let ρ =
min

(
ck−1ε−2 log n, 1

)
, and pick each surface of G into

a random sample R with probability ρ. Then, with
high probability, the L = kρ = O(ε−2 log n) level of
A(R) lies between the (1 − ε)k-level to the (1 + ε)k-
level of A(G). This holds with high probability.

2.4.2 Approximating the Extent of Shallow Levels

We need the result of Har-Peled and Wang [HW04].
It states that for well behaved set of functions, one
can find a small subset of the functions such that the
vertical extent of the subset approximates the extents
of the whole set. This holds only for “shallow” lev-
els ≤ k. In our application k is going to be about
O(ε−2 log n).

3 The approximation algorithm

We are now ready to put everything together. Let the
input be a set P of n points in the plane. We define,
as in Section 2.1, for each point of P a surface in ;3.
Each such surface is a cone. Let G be the resulting
set of cones.
We decompose the arrangement A(G) into lev-

els. Next, we chunk the levels into sets, as
done in Section 2.3, where M = O(ε−2 log n) and
N = M + O(ε−1 log n) = O(ε−2 log n). Let
L1, . . . , LN , RN , . . . , R1 denote the resulting chunks
of levels. Next, let li = LG,i−1 and ri = UG,i−1 for
i = 1, . . . ,M . For i = N + 1, . . . ,M , we generate
a random sample Ri of G, according to Lemma 5,
and levels li = LRi,ki and ri = URi,ki , where ki =
O(ε−2 log n). We are guaranteed, with high probabil-
ity, that li lies between the lowest and highest levels
defined by Li, and similarly that ri lies between the
highest and lowest levels of Ri, for i =M + 1, . . . , N .

Of course, computing the surfaces li and ri ex-
plicitly is going to be prohibitively expensive. How-
ever, li and ri are the bottom/top ki-level in the ar-
rangement A(Ri). Since, ki is relatively small, this
means that those levels are shallow. As such, we
can compute a subset Vi ⊆ Ri, such that Vi|kiki

(x) ≥
(1−ε/10)Ri|kiki

(x), for all x ∈ ;2, using [HW04]. Here,
s = 2 and |Vi| = O(ki/ε

4) = O(poly(1/ε, log n)).
Next, let l′i and r

′
i the ki-bottom/top levels inA(Vi),

respectively, for i = M + 1, . . . , N . Note that for i =
1, . . . , N we can use the same sample. As such, V1 =
· · · = VM . We assign the surfaces l′i and r

′
i the weight

|Li| = |Ri|, for i = 1, . . . , N . Next, consider the set
of the weighted surfaces G′ = {l′1, . . . , l′N , r′1, . . . , r′N}.
It follows by Lemma 4 that

νG′(p) ≈ε νG(p),

where p is any point in ;3. This holds with high
probability. We still remain with the question of find-
ing the global minimum of νG′(p). To this end, we
decompose ;3 into vertical prisms, such that inside
such prism a vertical line intersect exactly the same
surface patches in the same order. It is now straight-
forward to show that the number of such prisms is
O(poly(log n, 1/ε)). Inside each such prism, the ar-
rangement A(G′) has the same surfaces intersecting it
in the same ordering. Namely, we have a portion of
the parametric space we have to find the minimum
for (i.e., the prism), while having a small number of
weighted surfaces we have to consider.
Using the slow algorithm inside every prism, gives

us an (1 + ε)-approximation inside each such prism.
Since the running time inside each such prism
is O(poly(log n, 1/ε)), there are O(poly(logn, 1/ε))
prisms. Thus the overall running time is O(n +
poly(logn, 1/ε)). We summarize:

Theorem 6 Given a set P of n points in the
plane, and parameter ε, one can compute in O(n +
poly(logn, 1/ε)) time the circle minimizing the L1

fitting price to P . The running time is O(n +
poly(logn, 1/ε)). The result is correct with high prob-
ability.

4 Conclusions

We had described in this paper an (1 + ε)-
approximation algorithm for the problem of L1-fitting
of a circle to a set of points in the plane. The running
time of the new algorithm is O(n+ poly(log n, 1/ε)),
which is a linear running time for fixed ε. The con-
stant powers hiding in the polylogarithmic term are
too embarrassing to be explicitly stated, but are prob-
ably somewhere between 20 to 60. As such, this algo-
rithm is only of theoretical interest. As such, the first
open problem raised by this work is to improve this
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constants. A considerably more interesting problem
is to develop a practical algorithm for this problem.
It is the author’s belief that the techniques de-

scribed in this paper, can be also applied to the prob-
lem of L2-fitting of a circle to a set of points (i.e.,
best circle fitting a set of points minimizing the sum
of square distances of the points to the circle). More
importantly, it seems that the technique should be
applicable to any of the fitting problems handled by
the algorithm of Agarwal et al. [AHV04]. This in-
cludes the L1-fitting of a sphere or a cylinder to a set
of points.
A natural question is whether one can use the tech-

niques of Har-Peled and Wang directly, to compute a
coreset for this problem, and solve the problem on the
coreset directly (our solution did a similar thing, by
breaking the parametric space into a small number
regions, and constructing a coreset inside each such
region). There is unfortunately a nasty technicality
that requires that a coreset for the L1-fitting of linear
function, is also coreset if we take the square root of
the functions. It seems doubtful that this claim holds
in general, but maybe a more careful construction of
a coreset for the linear functions case would still work.
The author leaves this as an open problem for further
research.
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