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Abstract

This paper is concerned with polynomial time approx-
imations schemes for the generalized geometric prob-
lems with geographic clustering. We illustrate the
approach on the generalized traveling salesman prob-
lem which is also known as Group-TSP or TSP with
neighborhoods. We prove that under the condition
that all regions are non-intersecting and have compa-
rable sizes and shapes, the problem admits PTAS. To
derive a PTAS we extend the algorithm by Arora [2].
This extension involves the dissection mechanism and
solution of the selection problem. We observe that the
results are applicable to many generalized geometric
problems, to other Minkowski norms, and to other
fixed dimensional spaces.

1 Introduction

Problem Statement. We consider the following
generalization of the classic Euclidean Traveling Sales-
man Problem (TSP). Assume that a salesman has to
visit k customers. Each customer has a set of specified
locations in the plane (referred to as a region) where
the customer is willing to meet the salesman. The ob-
jective is to find a shortest salesman tour that visits
each of these customers. If a region is a single point,
the described problem becomes the classic TSP.
The described generalization of TSP is known as

the Generalized TSP, or the Group-TSP, or the TSP
with neighborhoods. For short we shall refer to this
problem as to GTSP. In the similar way we can de-
fine the generalizations for many other geometric opti-
mization problems, for instance, Minimum Spanning
Tree, Minimum Steiner Tree, Minimum k-Connected
Subgraph, and many others.

Related Work. Traditionally, TSP attracts atten-
tion of many researchers in combinatorial optimiza-
tion. The problem is known to be NP -hard. In the
late nineties it has been shown that TSP and many
other geometric optimization problems admit polyno-
mial time approximation schemes (PTAS), see Arora
[1] and Mitchell [5].
For GTSP it is known that the problem cannot be

efficiently approximated within any constant factor
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unless P = NP , see [6]. Constant factor approxi-
mations were developed for the special cases where
neighborhoods are disjoint convex fat objects [3], and
where the diameter of neighborhoods are comparable
[4]. For the case where the neighborhoods are pairwise
disjoint unit disks Dumitrescu and Mitchell developed
a PTAS [4].

Our results. In this paper we consider the special
case of GTSP where the regions are non-intersecting
and have comparable sizes and shapes. More pre-
cisely, the clustering is defined by a collection of k
simple polygons in the plane satisfying the following
properties. Two polygons may intersect each other
only on the boundaries. Every polygon contain a disk
of diameter q and the perimeter of each polygon is
bounded from above by cq where c is a constant. In
the interiors of these polygons n points are distributed
in such a way that each polygon contains at least one
of the given points. The points belonging to the same
polygon form a region. We associate the polygons
with countries, the points with cities, and we refer to
the regions as to geographic clusters.

We prove that GTSP restricted to the geographic
clustering admits a PTAS. This result generalizes the
PTAS for pairwise disjoint unit disks by Dumitrescu
and Mitchell [4] in two directions. First, we allow
a bigger variety of shapes and sizes of the regions.
Second, we allow regions to be finite sets and for ev-
ery region we solve the selection problem, namely, we
choose the city to be visited.

Furthermore, our results are based on techniques
different from m-guillotine method used in [4]. To de-
rive a PTAS for GTSP with geographic clustering we
extend the randomized dissection method presented in
Arora [2]. We introduce a new dissection technique
which can be used to construct PTAS for many gener-
alized geometric problems with geographic clustering.
In contrast to [2] where the level lines in the dissec-
tion are straight, the new dissection is based on the
curved (piece-wise linear) level lines. We also adopt
the dynamic programming routine from [2] to solve
the selection problems in the regions.

Finally, we observe that our algorithm is applicable
to generalized versions of many geometric optimiza-
tion problems listed in [2]. We also observe that the
methodology is applicable to other Minkowski norms
and to other fixed dimensional spaces which also ex-
tends the results from [4].
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2 PTAS for GTSP with geographic clustering

To obtain a PTAS for GTSP with geographic cluster-
ing we follow the Arora’s PTAS [2] making the follow-
ing changes:

1. Curved dissection. Straight level lines in the
dissection could cut a polygon into parts. This
causes the problem that for a cut polygon we can-
not decide to which node of the dissection tree it
belongs. We fix this problem by curved dissec-
tion. Assume that a horizontal line in the dissec-
tion cuts some polygon into two or more parts,
say “north” and “south”. In this case, we redefine
the level line as follows. Let the level line follow
the boundary of the “south” leaving the entire
polygon in the “north”, see Figure 1. Similarly,
we change the vertical level lines leaving the cut
polygons in the “west”. Doing the curved dissec-
tion we uniquely define the places of cut polygons
in the 4-ary dissection tree.

straight level lines
curved level lines

Figure 1: Curved dissection

2. Early stop. If the curved dissection goes too
deep, two sequential curved level lines may have a
common segment which again can cause the prob-
lem when deciding to which node of the dissection
tree the polygon belongs. To avoid common seg-
ments we stop the dissection when the distance
between two sequential straight level lines is cq.
So, with the early stop and the curved dissection
we uniquely define the places for all polygons in
the 4-ary dissection tree.

3. Reduced random shifts. By early stop in the
randomized dissection it is sufficient to consider
the random horizontal shifts a and random verti-
cal shifts b such that both, a and b, are divisible
by cq.

4. Portals multiplicities. Since we allow curved
level lines, the perimeter of the “squares” in the

dissection increases. To keep the inter-portal dis-
tances unchanged on the curved level lines, we
have to enlarge the number of portals on the
perimeter of the “squares”. From the condition
that perimeter of any polygon is at most cq, we
derive that the perimeter of any “square” in the
curved dissection is at most 4c2/π times bigger
than the perimeter of the corresponding square in
the straight dissection. Therefore, it is sufficient
to multiply the portal parameter by the constant
factor 4c2/π.

5. Solution of the selection problem. From
early stop and condition that each polygon con-
tains a disk of diameter q, we derive that in
the leaves of the revised 4-ary dissection tree the
number of polygons is at most 4c2/π. Since the
number of cities in each polygon is finite and we
have to pick up only one city per polygon, for any
leaf of the dissection tree we can effectively enu-
merate all possible arrangements for the cities to
be visited.

For the revised algorithm we prove the Structure
Theorem as in [2], and consequently we have the fol-
lowing theorem.

Theorem 1 With probability at least 1/2 over the
choice of the shifts a and b, the revised algorithm pro-
vides a portal respecting tour of length (1 + ε)OPT
in time O(nO(c2/ε)), where ε > 0 is a required accu-
racy parameter, and OPT is the optimum GTSP tour
length.

To derandomize the algorithm we can, for instance,
go through all choices for a and b.
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