
EWCG 2005, Eindhoven, March 9–11, 2005

Approximate Multi-Visibility Map Computation

Narćıs Coll∗ Marta Fort∗ J. Antoni Sellarès∗

Abstract

A multi-visibility map is the subdivision of the do-
main of a terrain into different regions that, according
to different criteria, encode the visibility with respect
to a set of view elements. We present an algorithm
for computing approximate multi-visibility maps for
a terrain, modeled as a TIN, with respect to a set of
view segments. Our approach is based on an algo-
rithm that reconstructs an approximation of an un-
known planar subdivision from information gathered
from linear probes of the subdivision.

1 Introduction

Visibility information of terrain areas is necessary in
many Geographic Information Systems applications,
such as path planning, mobile phone networks design
and environmental modeling.
The visibility map is an structure that encodes the

visibility of a terrain with respect to a view element
(point, segment, triangle, ...) belonging to or above
the terrain. Algorithms for computing the visibility
map of a point on a Triangulated Irregular Network
(TIN) are available in [3, 4]. Visibility structures for
several view elements, that we generically call multi-
visibility maps, can be defined by combining the vis-
ibility map of such elements according to some oper-
ators, for example intersection, union and counting.
When the representation of a terrain is a rough

approximation of the underlying terrain, the approx-
imated computation of a multi-visibility map is often
sufficient.
In this paper we address the problem of computing

approximate multi-visibility maps for a terrain mod-
eled by a TIN with respect to a set of view segments.

2 Preliminaries

2.1 TIN, visibility, multi-visibility map

A terrain can be modeled as the graph of a Triangu-
lated Irregular Network, (T ,F), formed by a triangu-
lation T = {t1, · · · , tn} of the domain D ⊂ R2 and
by a family F = {f1, · · · , fn} of linear functions such
that: a) function fi ∈ F is defined on triangle ti,

∗Institut d’Informàtica i Aplicacions, Universitat de Girona,
Spain, {coll,mfort,sellares}@ima.udg.es. Partially sup-
ported by grant TIN2004-08065-C02-02

i = 1..n; b) for every pair of adjacent triangles ti and
tj , fi(x, y) = fj(x, y) for all points (x, y) ∈ ti ∩ tj .
For any triangle ti ∈ T , ti = fi(ti) is a triangle

in R3 that we will call a face of the TIN, and the
restriction of each function fi to an edge or a vertex
of T is an edge or a vertex of the TIN, respectively.
Given a terrain (T ,F), we will say that a point

Q = (x, y, z) is above the terrain if the domain point
(x, y) belongs to some ti ∈ T and z > fi(x, y). A view
element (point, segment, triangle, ...) is an element
belonging to or above the terrain. A point P on the
terrain is called visible from a view point V if the in-
terior points of the line segment joining V and P lie
above the terrain. A point P belonging to the terrain
is called (weakly) visible from a view segment v if P is
visible at least from a point of v.
Given a set V of r view segments, a multi-visibility

map is a subdivision of the domain D of the terrain
into regions according to different visibility criteria.
Some subdivision criteria examples are: the region
visible from at least one segment and its complement;
the region visible simultaneously from all the seg-
ments and its complement; the regions visible from
exactly 0, 1, · · · , r segments.

2.2 Planar subdivision reconstruction

Given an unknown target bounded planar subdivision
S, in [2] a general purpose online reconstruction algo-
rithm is presented that reconstructs an approximation
of the unknown target based on information gathered
from linear probes of the target. The goal is to recover
the vertices, edges and faces of S based on the infor-
mation acquired from the probes. Online means that
the algorithm maintains an approximation of the pla-
nar subdivision after processing the information from
each line probe. Since the set of line probes does
not provide sufficient information to reconstruct S ex-
actly, the algorithm progressively refines the approxi-
mation which converges to S as the number of probe
lines increases. How the line probes are chosen plays
an important role in how accurate the reconstruction
is and how quickly it converges. The probing lines are
generated uniformly distributed over a bounding box
B of S so that the probability that a line intersects
a piece of the boundary of and edge of S, indepen-
dent of its location and orientation, is proportional to
its length [8]. A line probe L on S partitions L into
a finite set of segments with each segment labelled

97



21st European Workshop on Computational Geometry, 2005

with the face of S that contains it. The reconstruc-
tion algorithm maintains a triangulation of the end-
points of the segments from which the approximation
of the unknown target can be extracted. The mean
computational cost of the algorithm when k lines are
processed is O(k log k), where the hidden constant de-
pends on the quotient between the sum of the length
of all the edges of S and the perimeter of B. The
algorithm is particularly suited for the setting where
computing the intersection of a line with an unknown
target is much simpler than computing the unknown
target itself.

3 Approximate multi-visibility map computation

We have designed an algorithm for computing approx-
imate multi-visibility maps, according to different cri-
teria, based on the planar subdivision reconstruction
algorithm mentioned in previous section.
The input of our algorithm are a TIN (T ,F) and a

set of view segments V . The output is an approximate
multi-visibility map M. For representing T and M
we are going to use a DCEL structure. This structure
allows for all necessary traversal operations efficiently.
Next we give an overview of the major steps of our

algorithm.

• Determine an axis-parallel rectangular bounding
box B containing the domain D of the triangula-
tion T . Triangulate the region of B exterior to D
to extend T to a triangulation T ′ of B. To this
purpose it suffices to add O(n) triangles, where
n is the number of triangles in T , with four of
them having an edge that coincides with an edge
of B. Total cost O(n).

• Generate a set L of k lines uniformly distributed
over B. Each line in L is obtained in constant
time by the following process. Let p be a point
selected uniformly at random from the boundary
of B, and let φ be an angle selected uniformly at
random from the interval [0, π). A line uniformly
distributed over B will be a line l going through
p and such that the angle, interior to B, between
the edge s of B that contains p and l measures
φ. Cost O(k).

• For each line l ∈ L and each segment v ∈ V ,
computeMl,v, the restriction on l of the visibil-
ity map from v. First we compute the intersec-
tion of l with T . Let a1, · · · , am be the resulting
line sections, where aj ∈ tj . Cost O(m) (See
subsection 3.1). Next we determine the visibility
of the segment aj = fj(aj) on the face tj of the
TIN from the view segment v. Cost O(n2 log n)
(See subsection 3.2). FinallyMl,j is obtained as
the subdivision of l in segments according to the
visibility of aj , j = 1..m. Cost O(mn2).

• DenoteMl the restriction of the multi-visibility
map on l with respect to the segments of V .
Ml is obtained by merging the information in
Ml,v, for each v ∈ V . Naturally, the merging
operation depends on the visibility criterion cho-
sen for defining the multi-visibility map. Cost
O(mn2 log r), where r is the number of segments
in V .

• Apply the reconstruction algorithm to the k lines
Ml, l ∈ L. Cost O(k log k).

Consequently, the total cost of the algorithm in the
worst case is O(krmn2 log n) + O(k log k), where we
have supposed that r ≤ n.

3.1 Line-triangulation intersection

The m line sections resulting from the intersection of
l and T can be computed in O(m) time. To facilitate
the task we intersect l with the extended triangulation
T ′. An edge of the first triangle of T ′ intersected by
l is the edge of B containing the origin p of l. Start-
ing from this triangle we can traverse T ′ following
l through adjacent edges in constant time per edge.
The whole intersection process takes O(m) time.
From results of integral geometry we know that the

mean number of triangles of T intersected by a line
l uniformly distributed over B is m =

∑n
i=1 ∂ti/∂B

[8]. Consequently we can considered m as a function
depending on the triangulation and the bounding box.

3.2 Segment-segment visibility

Given a view segment v and a segment s on a face
of the TIN we want to compute the visible parts of
s from v. We will concentrate our attention in the
case in which v and s are non coplanar, so that they
determine a tetrahedron Tv,s. Therefore we will be
just interested in the n′ faces of the TIN intersecting
Tv,s. The study of the most simple case in which v
and s are coplanar and determine a quadrilateral is
omitted in this abstract.
We have adapted to our purpose an algorithm pro-

posed by Bern et al. [1] for computing the visibility
with a moving point of view in 3D polygonal scenes
and we also use ideas given by S. Ghali in [5] to de-
termine shadow points in 2D polygonal scenes. We
will solve the problem by setting a moving point on
v, and looking only what happens to s.
Let v be parameterized by ”time” t from 0 to 1. We

denote vt the point of v with parameter value t. When
points v0, v1 have different height we assume that v0

is located below v1. As well we consider the segment s
parameterized by u from 0 to 1 and we denote su the
point of s with parameter value u. We choose s0 and
s1 in such a way that the orthogonal projections onto
D of the segments v0s0 and v1s1 do not intersect.

98



EWCG 2005, Eindhoven, March 9–11, 2005

While we are moving vt along v, the triangle Tt de-
termined by vt and s, the vision triangle, sweeps the
tetrahedron Tv,s. During the sweep, for a given time
t, the intersection point between an edge e and the
vision triangle is the pierce point, pe,t (their position
and existence depend on t). At time t, the ordered
list of edges producing pierce points is the transpar-
ent visibility cycle (tvct). The edges are ordered ac-
cording to the angular order around vt of the pierce
points determined by them. The ordered list of edges
producing visible pierce points from vt is the opaque
visibility cycle (ovct). While we move vt, no impor-
tant changes in the visible parts of s are produced
unless in a point where there is a change either in
tvc or ovc. These points are the critical points and we
say that a transparent/opaque topology change occurs,
respectively. It is not difficult to see that a transpar-
ent topology change occurs at time t if and only if
there are two edges e and e′ such that there is a line
segment that intersects vt, e, e′ and s. And it is an
opaque topology change on s if, in addition, the line
segment does not pass through the interior of any face.
We are interested in determining the opaque topol-

ogy changes on s. Using ovc and tvc we are able to
determine all the critical points on v, but we are not
able to decide if the corresponding topology change
is opaque or transparent. With a preprocess we can
update ovc and determine where the opaque topol-
ogy changes occur [1]. To avoid this preprocess we
consider the back face of the edges producing pierce
points. The back face of the edge e at time t, denoted
bfe,t, is the first face intersected by the ray originated
in vt passing through pe,t. The face bfe,t may change
when there is a transparent topology change. We will
store with each edge e in tvct its back face bfe,t. When
moving vt, in order to update the back face of an edge
in O(log n′) time, we use some ”auxiliary” edges and
faces. Let E be the set of segments obtained inter-
secting the TIN edges and Tv,s. We take as auxiliary
edges the vertical segments joining an endpoint of a
segment in E with its orthogonal projection onto D.
We take as auxiliary faces the quadrilaterals deter-
mined by each segment in E and its orthogonal pro-
jection onto D. Observe that for each TIN edge we
introduce at most two new auxiliary edges and a face.
From now on, faces and edges mean both, the ones
from the TIN and the auxiliary ones.
In practice, during the sweep, we have three types of

critical points characterized by the following events:
(1) an endpoint of an edge is reached by Tt; (2) a
non-auxiliary edge intersects the boundary of Tv,s (3)
two edges exchange their order in tvc, what means
that the pierce points they determine exchange their
angular position. As Tv,s intersects with O(n′) edges,
the number of critical points is at most O(n′2).
Let us focus in the algorithm. The input is the TIN

(T ,F), the view segment v and the segment s on a

face of the TIN. The output is the set of the endpoints
of the visible sub-segments of s ordered by u.
The algorithm has two main parts:

1. Opaque topology changes on s: We move vt along
v sweeping the tetrahedron Tv,s with the vi-
sion triangle Tt. During the sweep we determine
the events corresponding to critical points along
v. These points are characterized by 4-tuples
(t, e, e′, u) such that su is the intersection point
between s and the line passing through vt, e and
e′. We only store the 4-tuples of critical points
that corresponds to opaque topology changes on
s, the shadow points, in an ordered list Cs.

2. Visible parts of s: First we obtain the visible
parts of v looking from point s0 ∈ s. Next we
determine the visible parts of s by traversing the
set of 4-tuples (t, e, e′, u) that characterize the
opaque topology changes on s in an ordered way
from u = 0 to u = 1.

3.2.1 Opaque topology changes on s

Events determination. The coordinates t and u
that correspond to the two events of type (1) and (2)
determined by and edge e can be easily computed in
constant time. We will characterize them by a 4-tuple
(t, e, e, u).
To obtain the events of type (3) we can consider all

the pairs of edges intersecting Tv,s and compute the
time were they would exchange their angular position.
In spite of using brute force, we only consider the pairs
of edges which are adjacent in tvct at some time t.
For this reason we will obtain them during the sweep
process. The coordinates t and u for the events of
type (3) are obtained using the skew projection [1].
Events are stored in a priority queue ordered by t.

Different events can occur at the same t, in this case
the last events to handle are the events of type (2)
with e as an auxiliary edge and u %= 1. During all
the process we will only store in the priority queue
events with t and u between 0 and 1.

Obtaining tvc0 and ovc0. Once we have the
priority queue initialized with events of type (1) and
(2), we can obtain tvc0 and ovc0.
We take the set E of edges e corresponding to the

events (0, e, e, u) and we delete these events from the
priority queue. The transparent visibility cycle tvc0
contains the edges of E ordered by increasing u. We
determine ovc0 and the back face bfe,0 of each edge
e ∈ E by an angular sweep around v0 in O(n′ log n′)
time. We store in the list L0 the faces intersecting the
line v0s1 by increasing distance from v0.

99



21st European Workshop on Computational Geometry, 2005

Once tvc0 has been computed we can obtain the
events of type (3) by traversing tvc0. For each
pair of adjacent edges in tvc0 we compute a 4-tuple
(t, e, e′, u) and we store it in the priority queue.

Handle events. Assume that for a critical
point occurred at t′ we have tvct′ , ovct′ , and Lt′ (the
ordered set of faces intersecting the line vt′s0). To
handle the next event (t, e, e′, u), t ≥ t′, found during
the sweep we must proceed as follows:

1) Obtain tvct and ovct. The updating process de-
pends on the type of the event handled, there is one
method for events of type (1) or (2) and another for
events of type (3). We use the auxiliary edges in order
that this update can be done in O(log n′) time. The
details are not given in this abstract.

2) Find new events of type (3). We check for new
adjacencies in tvct and we add the new events in the
priority queue.

3) Select opaque topology changes on s. If there
has been a change in ovc and the face containing
s belongs to {bfe,t′ , bfe′,t′ , bfe,t, bfe′,t} we store the
4-tuple (t, e, e′, u) in the list Cs of shadow points on
s.

Complete the list Cs of shadow points.
Finally we must complete Cs with the shadow points
produced by v0 and v1. These points are obtained
by traversing ovc0 and ovc1. For each edge e such
that s ⊂ bfe,j , j = 0, 1 we store in Cs the 4-tuple
(0, e, vs

j , u) where v
s
j is the vertical segment joining

vj with its orthogonal projection onto D.

3.2.2 Visible parts of s

Visible parts of v from s0. By working in the
triangle defined by v an s0 we partition v in segments
according to the visibility from s0. Each visible
segment of v is determined by a pair of edges (e, e′).
The visibility changes in v are obtained by making a
sweep around s0 similar to the sweep made to obtain
tvc0 and ovc0 but considering v as a face. It takes
at most O(n′ log n′) time (details omitted in this
abstract). At the end of the process the pairs (e, e′)
are stored in the set of visible parts of v from s0,
Vv,0.

Visible parts of s from v. For each 4-tuple
in Cs we update in O(log n′) time Vv,u, the set of
visible parts of v from su, and we obtain the set of
endpoints of the the visible segments of s according
to a process similar to the one given in [5].

4 Visibility from a polygon and inter-regions visi-
bility

If we are interested in a multi-visibility map from a
view polygon placed on or over a terrain we just have
to consider the visibility from the segments forming
the boundary of this polygon [9] and then merge the
visibility information obtained for each single bound-
ary segment to obtain information of the whole view
polygon.
A region on a TIN is the subset of faces of the TIN

determined by a connected subset of triangles of the
domain triangulation. Our algorithm can be easily
adapted to determine the approximate weak visibil-
ity from region R to region R′ [7]. Just consider the
region R as a set of view polygons and use the pro-
jection onto D of the region R′, instead of the whole
D, to take random lines.

References

[1] M. Bern, D. Dobkin, D. Eppstein, and R. Grossman.
Visibility with a moving point of view, In Algorith-
mica 11, pages 360-378, 1994.

[2] N. Coll, F. Hurtado and J.A. Sellarès. Approximating
planar subdivisions ans generalized Vornoi diagrams
from random sections, In 19th European Workshop
on Computational Geometry, pages 27-30, 2003.

[3] L. De Floriani, P. Magillo, Visibility Algorithms
on Triangulated Digital Terrain Models, In Inter-
national Journal of Geographic Information Systems
8(1), pages 13-41, 1994.

[4] L. De Floriani, E. Puppo, P. Magillo, Applications of
Computational Geometry to Geographic Information
Systems, In Handbook of Computational Geometry,
J.R. Sack, J. Urrutia (Eds.), pages 333-388, Elsevier
Science, 1999.

[5] S. Ghali, Computation and Maintenance of Visibility
and Shadows in the Plane, In Sixth Int. Conf. in Cen-
tral Europe on Computer Graphics and Visualization,
pages 117-124, 1998.

[6] Marc J. van Kreveld, Digital Elevation Models and
TIN Algorithms, In Algorithmic Foundations of Geo-
graphic Information Systems, LNCS 1340, pages 37-
78, 1997.

[7] Marc J. van Kreveld, E. Moet, R. van Ostrum, Re-
gion inter-visibility in terrains, In Proc. 20th Euro-
pean Workshop on Computational Geometry, pages
155-158, 2004

[8] L.A. Santalò, Geometric Probability, In Society for
Industrial and Applied Mathematics, 1976.

[9] C.An Wang,B.Zhu, Three-dimensional waeak visibil-
ity: Complexity and applications, In Theoretical
Computer Scinece 234, pages 219-232, 2000.

100




