
EWCG 2005, Eindhoven, March 9–11, 2005

Pointed Binary Encompassing Trees: Simple and Optimal

Michael Hoffmann∗ Csaba D. Tóth†

Abstract

For n disjoint line segments in the plane we con-
struct in optimal O(n log n) time an encompassing
tree of maximal degree three such that every vertex is
pointed. Moreover, at every segment endpoint all in-
cident edges lie in a halfplane defined by the incident
input segment.

1 Introduction

Interconnection graphs of disjoint line segments in the
plane are fundamental structures in computational ge-
ometry. Often more complex objects can be modeled
by their boundary segments or polygons. One par-
ticularly well-studied example is a crossing-free span-
ning graph: the encompassing graph for disjoint line
segments in the plane is a connected planar straight
line graph (Pslg) whose vertices are the segment
endpoints and that contains every input segment as
an edge. One well-known example of encompassing
graphs are constrained (Delaunay) triangulations [9].
Bose et al. [4, 3] showed that any finite set of dis-

joint line segments in the plane admits an encompass-
ing tree of maximum degree three. Moreover, they
gave an O(n log n) time algorithm to construct such
an encompassing tree for n given segments. Both the
degree bound and the runtime are best possible (the
latter in the algebraic computation tree model).
Hoffmann, Speckmann, and Tóth [5] extended the

result of Bose et al. by showing that for n disjoint
segments in the plane a pointed binary encompassing
tree can be constructed in O(n4/3 log n) time. A Pslg

is pointed iff for every vertex v all edges incident to v
lie in a halfplane whose boundary contains v.
Here, we improve this result in several aspects: We

construct an encompassing tree in optimal O(n log n)
time and guarantee a stronger sense of pointedness
where all edges incident to a vertex v lie in a half-
plane aligned with the input segment whose endpoint
is v. As an additional benefit, the presented algo-
rithm is also considerably simpler (to understand and
to implement) than the existing approach.

Theorem 1 Let S be a set of n disjoint line segments
in the plane. There exists an encompassing tree T (S)

∗Theoretical Computer Science, ETH Zürich,
hoffmann@inf.ethz.ch

†Department of Mathematics, MIT, Cambridge,
toth@math.mit.edu

of maximum degree three such that for every vertex
v all incident edges lie in a halfplane bounded by the
line through the segment from S that is incident to
v. Moreover, T (S) can be constructed in O(n log n)
time

Motivation Pointed Pslgs are closely related to
minimum pseudo-triangulations, which have numer-
ous applications in motion planning [11], kinetic
data structures [8], collision detection [1], and guard-
ing [10]. Streinu [11] showed that a minimum pseudo-
triangulation of V is a pointed Pslg on the vertex
set V with a maximal number of edges. As opposed
to triangulations, there is always a bounded degree
pseudo-triangulation of a set of points in the plane [7].
A bounded degree pointed encompassing tree for dis-
joint segments leads to a bounded degree pointed en-
compassing pseudo-triangulation, due to a result of
Aichholzer et al. [2].
A simple construction (Figure 1a) shows that not

every set of n disjoint segments in the plane admits an
encompassing path. But there is always a path that
encompasses Θ(log n) segments and does not cross
any other input segment [6].

2 Definitions

Polygons. A polygon P is a sequence (p1, p2, . . . , pk)
of points in the plane. Denote the set of vertices of
P by V (P ) = {p1, p2, . . . , pk}, and the set of edges by
E(P ) = {p1p2, p2p3, . . . , pk−1pk, pkp1}.
A weakly simple polygon is a polygon without self-

crossings. Any weakly simple polygon P partitions
R2 \ P into an interior and exterior.
The boundary of every simply connected polygo-

nal set D can be covered by a weakly simple polygon
∂D. In particular, every planar straight line tree A
can be covered by a weakly simple polygon ∂A. Note,
however, that a vertex of the tree A can occur several
times among the vertices of ∂A. One way to distin-
guish distinct occurrences of the same point along ∂A
is by the angles (three consecutive vertices) along ∂A.

Faces of a PSLG. The complement of a con-
nected Pslg A can have several connected compo-
nents, which we call the faces of A. The boundary of
each face F can be covered by a weakly simple poly-
gon ∂F . We say that a vertex vi of the weakly simple
polygon ∂F is convex (reflex) if the angle ∠vi−1vivi+1

93



21st European Workshop on Computational Geometry, 2005

whose angular domain contains F is less than (more
than) 180◦. This angle is the exterior angle of ∂F
for the outer face, and the interior angle of ∂F for all
bounded faces.

(a) (b)

(c) (d)

Figure 1: Six segments not admitting an encompass-
ing path (a), a connected Pslg with 4 faces including
the outer face (b), disjoint segments (c), and their
convex partition (d).

Convex partition and cells. The free space
around n disjoint line segments in the plane can be
partitioned into n+1 convex cells by the following well
known partitioning algorithm. (For simplicity, we as-
sume that no three segment endpoints are collinear.)
For every segment endpoint p of every input segment
sp, extend sp beyond p until it hits another input
segment, a previously drawn extension, or to infinity.
There may be many different partitions depending of
the order in which we consider the segment endpoints,
but the number of convex cells is always n+ 1.

3 Tunnel Graphs

Consider a set of disjoint segments S in the plane and
a convex partition P (S) obtained by the above algo-
rithm. Let us assign every segment endpoint p to an
incident cell τ(p) of the partition. We define the tun-
nel graph T (S, P (S), τ) for S, a partition P (S), and
an assignment τ as follows: The nodes of T corre-
spond to the convex cells of P (S). Two nodes a and b
are connected by an edge iff there is a segment pq ∈ S
such that τ(p) = a and τ(q) = b. The tunnel graph
is clearly planar; and T has n+ 1 nodes and n edges,
therefore it is connected iff it is a tree.

Theorem 2 For any set S of n disjoint line segments,
we can construct in O(n log n) time a convex partition

P (S) and an assignment τ such that the tunnel graph
T (S, P (S), τ) is a tree.

We note that the choice of the convex partition is
important in Theorem 2: Figure 2(d) shows seven
disjoint line segments and a convex partition such that
there is no assignment for which the tunnel graph is
connected. We obtain Theorem 1 as a corollary of
Theorem 2.

Proof of Theorem 1. Consider a partition P (S)
and an assignment τ provided by Theorem 2. We
construct a binary encompassing tree as follows: In
each cell connect all segment endpoints assigned to it
by a simple path; for example, connect them in the
order in which they appear along the boundary of the
cell.
The resulting graph is clearly a Pslg that en-

compasses the input segments. The maximal degree
is three because we add at most two new edges at
every segment endpoint. It remains to prove con-
nectivity. Let p and r be two segment endpoints.
We know that the tunnel graph is connected, so
there is an alternating sequence of cells and segments
(a1 = τ(p), p1q1, a2, . . . , pk−1qk−1, ak = τ(r)) such
that τ(pi) = ai and τ(qi) = ai+1, for every i. As
all segment endpoints assigned to the same cell are
connected, this path corresponds to a path in the en-
compassing graph. �

4 Constructing the Convex Partition

This section is devoted to the proof of Theorem 2.
Given n disjoint line segments in the plane, we par-
tition the free space around the segments into n + 1
convex cells and we assign an incident cell to every
segment endpoint in O(n log n) time.
Let R be a bounding box of the input segments.

We construct a convex partition of the free space in
two phase line sweep algorithm. In the first phase,
we apply a left-to-right sweep: We extend every in-
put segment beyond its right endpoint until the ex-
tension hits another segment, another extension, or
the boundary of R. If two extensions meet, then an
arbitrary one continues and the other one ends.
The free space of the input segments and their right

extensions is a simply connected set C0 ⊂ R. Or-
der the segments s1, . . . , sn according to the order of
their left endpoint along ∂C0. Let pi (qi) denote the
left (right) endpoint of si. We extend every input
segment si, i = 1, 2, . . . , n, in this order, beyond its
left endpoint pi until the extension hits another seg-
ment, another extension, or the boundary of R. Let
γi denote the left extension of si. Every segment γi

recursively partitions a cell of our cell complex into
two subcells. Notice that all left extensions γi can be
constructed in a single right-to-left sweep which gives
priority to the segment of smaller index whenever two

94



EWCG 2005, Eindhoven, March 9–11, 2005

(a) Partition. (b) Tunnel Graph. (c) Encompassing Tree.

p

q

a

b

c

(d) Disconnected.

Figure 2: An example for a partition with an assignment (a), the corresponding tunnel graph (b), the resulting
tree (c). A partition for which no assignment gives a connected tunnel graph (d).

extensions meet. Thus we can compute a convex par-
tition P by two line sweeps in O(n log n) time.
For constructing the assignment τ , we assume that

all right extensions are in place, and we insert the
left extensions one by one (even though we have
pre-computed all left extensions in a single sweep).
We define the assignment τ on the endpoints of si,
i = 1, 2, . . . , n, as soon as γi has been inserted. When
the first i − 1 left extensions have been inserted, we
have a partition Pi−1 into i cells and a partial as-
signment τi−1 on the endpoints of the first i− 1 seg-
ments. Pi−1 and τi−1 define a tunnel graph Ti−1 on i
nodes. We choose the assignment at the endpoints of
si inductively such that Ti (a graph with i+1 nodes)
remains connected.
Assume that γi splits a cell Ci of Pi−1 into two cells

C ′i, C
′′
i ∈ Pi. The node v(C) ∈ Ti−1 corresponding to

cell C is split into two nodes C ′ and C ′′, which lie in
different components of the resulting graph T ′i−1. The
left endpoint pi of si is incident to both C ′i and C

′′
i

because pi ∈ γi. The right endpoint qi, however, may
be incident to neither C ′i nor C

′′
i . We always assign

qi to the cell lying above qi. We can always assign p1

to C ′i or C
′′
i , whichever lies in the other component of

T ′i−1 as τ(qi), thus ensuring that Ti is a tree.
We have shown that there exists an assignment τ =

τn for which the tunnel graph T = Tn is connected.
It remains to prove that such an assignment can be
computed in O(n log n) time. That is, we need to
decide efficiently whether two cells are in the same
connected component of the current tunnel graph Ti.
Data structure. For each cell C of Pi−1, we main-
tain a doubly linked list of all segment endpoints and
vertices along ∂C. The assignments τi carries one bit
information for each segment endpoint r: It assigns
r to the cell lying below or above r. We can insert a
splitting segment γi by splitting the doubly connected
list of of Ci into C ′i and C

′′
i in constant time. We also

note an interval g(v) ⊂ [1, n] for each vertex v of the
right extension tree such that the descendants of v

contain every left segment endpoint pj , j ∈ g(v). We
maintain a coloring on the segments and their left and
right extensions: Every input segment and every right
extension is blue. The color of right extensions is de-
fined recursively: γi is blue if its left endpoint hits a
blue segment, otherwise it is red. We also maintain
an index ind(e) for every blue input segment or blue
extension. The index of si or its right extension is i.
If γi hits a segment of index j then ind(γi) = j.

Assignment rule. We assign pi according to the
following rule: If γi is blue and vi %∈ si where vi is the
deepest vertex in the right extension tree such that
[ind(γi), i] ⊆ g(vi), then we assign pi to the cell above
it, otherwise to the cell below it. It takes O(log n)
time to find vi in the right extension tree, and so τ(pi)
can be computed for all i = 1, 2, . . . , n in O(n log n)
time.

Proposition 3 Choosing τ(pi) by the above rule
maintains the connectivity of Ti

Proof. We define an orientation on the input seg-
ments and their extensions. Every segment and every
right extension is directed to the right, every left ex-
tension is directed to the left. Note that there are
no cycles in this orientation. For every i = 1, 2, . . . n,
we define a curve βi through pi: two branches of βi

start out from pi to the left along γi and to the right
along si, they follow the above orientation until the
two branches meet or until both hit the bounding box
R. Curve βi partitions R into two regions Ai and Bi

such that pi lies on their common boundary. Observe
that the curve does not pass through any left seg-
ment endpoint, and recall that every right segment
endpoint qj , is assigned to the region above qj .
By a case analysis, we can verify that si is the only

segment whose left and right endpoints are assigned
to regions Ai and Bi, respectively, and the assignment
rule assigns pi and qi to distinct regions. (1) If γi is
red then βi is x-monotone and its two branches pass

95



21st European Workshop on Computational Geometry, 2005

(a) (b)

2 1

4

3

(c)

5

7

6

2 1

8

4

3

(d) (e)

Figure 3: Constructing the partition: First all right extensions (b), then the left extensions are inserted one by
one (c) and (d), and from the final partition together with the assignment we can construct the encompassing
tree.

through right endpoints only, so pi is the only vertex
that might be assigned to the region below βi. (2)
Suppose that γi is blue: The left branch of βi starts
out x-monotone decreasing, then it hits a segment
or a right extension and turns back in x-monotone
increasing direction. Let Ai be the region not adjacent
to the left side of R. Ai is an x-monotone region. (2a)
If γi hits a segment sj , j > i, or its right extension,
then Ai must be below si. We know that Bi is above
qi and Ai is below pi. (2b) If γi hits a segment sj ,
j < i, or its blue extension, then Ai is above si, so we
know that Ai is above pi. The rightmost point of Ai

is vi. The only case where Ai does not lie above qi is
that vi ∈ si. �

Acknowledgments We thank Bettina Speckmann
for several helpful discussions.

References

[1] P. K. Agarwal, J. Basch, L. J. Guibas, J. Hershberger,
and L. Zhang, Deformable free space tilings for ki-
netic collision detection, in Proc. 4th WAFR, 2001,
83–96.

[2] O. Aichholzer, M. Hoffmann, B. Speckmann, and
Cs. D. Tóth, Degree bounds for constrained pseudo-
triangulations, in: Proc. 15th CCCG, 2003, pp. 155–
158.

[3] P. Bose, M. E. Houle, and G.T. Toussaint, Every set
of disjoint line segments admits a binary tree, Dis-
crete Comput Geom. 26 (2001), 387–410.

[4] P. Bose and G. T. Toussaint, Growing a tree from its
branches, J. Algorithms 19 (1995), 86–103.

[5] M. Hoffmann, B. Speckmann, and Cs. D. Tóth,
Pointed binary encompassing trees, in Proc. 9th
SWAT, vol. 3111 of LNCS, Springer-Verlag, 2004,
pp. 442–454.

[6] M. Hoffmann and Cs. D. Tóth, Alternating paths
through disjoint line segments, Inf. Proc. Letts. 87
(2003), 287–294.

[7] L. Kettner, D. Kirkpatrick, A. Mantler, J. Snoeyink,
B. Speckmann, and F. Takeuchi, Tight degree bounds
for pseudo-triangulations of points, Comput. Geom.
25 (2003), 1–12.

[8] D. Kirkpatrick and B. Speckmann, Kinetic main-
tenance of context-sensitive hierarchical representa-
tions for disjoint simple polygons, in Proc. 18th
SoCG, 2002, pp. 179–188.

[9] D. T. Lee and A. K. Lin, Generalized Delaunay trian-
gulations for planar graphs, Discrete Comput. Geom.
1 (1986), 201–217.

[10] B. Speckmann and Cs. D. Tóth, Allocating ver-
tex π-guards in simple polygons, 14th SODA, 2003,
pp. 109–118.

[11] I. Streinu, A combinatorial approach to planar non-
colliding robot arm motion planning, 41st FOCS,
2000, pp. 443–453.

96




