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On Pseudo-Convex Decompositions, Partitions, and Coverings
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Abstract

We introduce pseudo-convex decompositions, parti-
tions, and coverings for planar point sets. They are
natural extensions of their convex counterparts and
use both convex polygons and pseudo-triangles. We
discuss some of their basic combinatorial properties
and establish upper and lower bounds on their com-
plexity.

1 Introduction

Let S be a set of n points in general position in the
plane. The convex cover number of S, κc(S), is the
minimum number of convex polygons spanned by S
and covering all points of S. The study of convex
cover numbers is rooted in the classical work of Erdös
and Szekeres [3, 4] who showed that any set of n points
contains a convex subset of size O(log n). More recent
results include the work by Urabe [9].
Together with convex coverings also convex parti-

tions and convex decompositions have received much
recent attention [9, 7, 5, 8, 10]. Here the convex par-
tition number of S, κp(S), is the minimum number of
disjoint convex polygons spanned by S and covering
all vertices of S; the convex decomposition number of
S, κd(S), is the minimum number of faces in a sub-
division of the convex hull of S into convex polygons
whose vertex set is exactly S.
Whether a chain of points is considered convex or

reflex depends only on the point of view. Therefore,
when studying convex chains and polygons contained
in a set of points one might also consider reflex chains
or polygons. See for example the work by Arkin et
al. [2] who study questions related to convex coverings
and partitions by examining the reflexivity of point
sets. The ’most reflex’ polygon possible is the pseudo-
triangle which has exactly three convex vertices with
internal angles less than π. A pseudo-triangle is the
natural counterpart of convex polygons.
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In this paper we introduce pseudo-convex de-
compositions, partitions, and coverings which use
both convex polygons and pseudo-triangles. Pseudo-
convex decompositions and partitions are significantly
sparser than their convex counterparts while pseudo-
convex and convex coverings have asymptotically the
same complexity.

Definitions. A pseudo-triangulation for S is a par-
tition of the convex hull of S into pseudo-triangles
whose vertex set is exactly S. A vertex is called
pointed if it has an adjacent angle greater than π.
A planar straight line graph is pointed if every vertex
is pointed.
The pseudo-convex cover number ψc(S) of S is the

minimum number of convex polygons and/or pseudo-
triangles spanned by S and covering all points of S.
The pseudo-convex cover number for all sets of fixed
size n is ψc(n) := maxSψc(S).
The pseudo-convex partition number ψp(S) of S

is the minimum number of disjoint convex polygons
and/or pseudo-triangles spanned by S and covering
all vertices of S. The pseudo-convex partition num-
ber for all sets of fixed size n is ψp(n) := maxSψp(S).
Note that disjoint here implies empty (of points): nei-
ther a convex nor a pseudo-convex partition contains
nested polygons.
A pseudo-convex decomposition of S is a parti-

tion of the convex hull of S into convex polygons
and/or pseudo-triangles spanned by S. For instance
every triangulation or pseudo-triangulations of S is a
pseudo-convex decomposition. The minimum number
of polygons needed for a pseudo-convex decomposi-
tion of S is the pseudo-convex decomposition number
ψd(S). The pseudo-convex decomposition number for
all sets of fixed size n is ψd(n) := maxSψd(S).
We denote the convex cover number (and equiva-

lently the convex partition and decomposition num-
ber) for all sets of fixed size n with κc(n) :=
maxSκc(S).

Figure 1: From left to right: Pseudo-convex
decomposition, partition, and covering.
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Previous work and results. The convex decomposi-
tion number κd(n) is bounded by

n− 3 + �
√
2(n− 3)� ≤ κd(n) ≤

10n− 18
7

(left: Garćıa-López et al. [5], right: Neumann-Lara et
al. [8]). We show that the pseudo-convex decomposi-
tion number is bounded by

3
5
n ≤ ψd(n) ≤

7
10
n .

The convex partition number κp(n) is bounded by⌈
n− 1
4

⌉
≤ κp(n) ≤

⌈
5n
18

⌉
(left: Urabe [9], right: Hosono and Urabe [7]). We
show that the pseudo-convex partition number ψp(n)
is bounded by ⌊n

6

⌋
+ 1 ≤ ψp(n) ≤

n

4
.

The convex cover number κc(n) is bounded by

n

log2 n+ 2
< κc(n) <

2n
log2 n− log2 e

,

for n ≥ 3 [9]. There is an easy connection between
the pseudo-convex cover number and the convex cover
number, namely ψc(n) ≤ κc(n) ≤ 3ψc(n) (all points
which can be covered by a pseudo-triangle can be cov-
ered by at most three convex sets). Thus both num-
bers have the same asymptotic behavior, which im-
plies ψc(n) ∈ Θ( n

log n ).
The upper bound construction for ψd(n) depends

on exact results for small point sets. These are re-
lated to a combinatorial geometry problem posed by
Erdös. For n(k) ≥ 3 find the smallest integer n(k)
such that any set S of n(k) points contains the vertex
set of a convex k-gon whose interior does not contain
any points of S. Klein [3] showed that every set of 5
points contains an empty convex quadrilateral, that
is n(4) = 5. Urabe proved in [9] that every set of 7
points can be partitioned into a triangle and a disjoint
convex quadrilateral. Hosono and Urabe [7] showed
that every set of 9 points contains two disjoint empty
convex quadrilaterals. Harborth [6] proved that ev-
ery set of 10 points contains an empty convex pen-
tagon, that is n(5) = 10. We prove the following two
Ramsey-type results:

Theorem 1 Every set of 8 points in general position
contains either an empty convex pentagon or two dis-
joint empty convex quadrilaterals.

Theorem 2 Every set of 11 points in general posi-
tion contains either an empty convex hexagon or an
empty convex pentagon and a disjoint empty convex
quadrilateral.

Both results were established with the help of the or-
der type data base [1]. In the full paper we also pro-
vide a surprisingly intuitive geometric proof of Theo-
rem 1 that requires only a moderate number of case
distinctions.
Furthermore, we establish some basic combinatorial

properties of ψd(n), ψp(n), and ψc(n) and we also
prove that ψd(n) is monotonically increasing.

2 Basic Properties

Our first (trivial) observation is that ψd(n) ≤ κd(n),
ψp(n) ≤ κp(n), and ψc(n) ≤ κc(n). It is well known
that κc(n) ≤ κp(n) ≤ κd(n). For pseudo-convex faces
we trivially have ψc(n) ≤ ψp(n). ψp(n) ≤ ψd(n) fol-
lows from the bounds given in the previous section.
Next we observe that ψd(n+1) ≤ ψd(n)+1, ψp(n+

1) ≤ ψp(n) + 1, and ψc(n + 1) ≤ ψc(n) + 1. This
follows by induction when inserting the points in x-
sorted order. For covering and partitioning the last
inserted vertex is a singleton, for decomposing it forms
a corner of a pseudo-triangle similar to the last step
in a Henneberg construction.
The following lemma establishes an interesting con-

nection between the convex partition number and the
pseudo-convex decomposition number.

Lemma 3 For any point set S we have ψd(S) ≤
3κp(S)− 2 and thus ψd(n) ≤ 3κp(n)− 2.

Table 1 shows the exact values of ψc(n), ψp(n), and
ψd(n) for small sets of points. There is one intriguing
open case: ψp(13) ∈ {3, 4}: ψp(13) = 3 would imply
an improved upper bound of ψp(n) ≤ 3n/13.
The pseudo-convex decomposition, partition, and

covering numbers for a particular point set S are not
necessarily monotone. Consider the examples in Fig-
ure 2: (left) A set S with 9 points and ψd(S) = 3.
Removing the bottom most point of S results in a set
S′ with 8 points and ψd(S′) = 4. (right) A set S with
6 points and ψc(S) = ψp(S) = 1. Removing the top-
most point of S results in a set S′ with 5 points and
ψc(S′) = ψp(S′) = 2.

Figure 2: Sets with non-monotone behavior.

3 Pseudo-Convex Decompositions

We first give a formula for the number of faces in a
pseudo-convex decomposition:
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n 3 4 5 6 7 8 9 10 11 12 13 14 15

ψc(n) 1 1 2 2 2 2 2 2..3 2..3 2..3 2..3 2..3 2..4
ψp(n) 1 1 2 2 2 2 3 3 3 3 3..4 3..4 4
ψd(n) 1 2 2 3 4 4 5 6 6 7 8 8..9 8..9

Table 1: Bounds on the pseudo-convex cover number ψc(n), partition
number ψp(n), and decomposition number ψd(n) for small point sets.

Lemma 4 Let S be a set of n points in general po-
sition. Let P be a pseudo-convex decomposition of
S, nk the number of convex k-gons in P , and p the
number of pointed vertices. Then the number of faces
of P is

|P | = 2n− p− 2−
n∑

k=4

nk(k − 3)

Corollary 5 The number of faces in a pointed
pseudo-convex decomposition is

|P | = n− 2−
n∑

k=4

nk(k − 3)

Although the pseudo-convex decomposition num-
ber for a particular point set S might not be mono-
tone (recall Figure 2), ψd(n) nevertheless increases
monotonically with n.

Theorem 6 The pseudo-convex decomposition num-
ber increases monotonically with the number of
points.

Proof. We have to show that ψd(n) ≤ ψd(n + 1)
which is equivalent to show that for all point sets S,
|S| = n, ψd(S) ≤ ψd(n + 1) holds. So let S be some
point set with n vertices and let q ∈ S be an extreme
point of S. We place a new vertex q+ arbitrarily close
to q to get the set S+ = S ∪ q+ such that both, q and
q+, are extreme vertices of S+. Note that S+ \ q has
the same order type as S, that is, for any two points
p1, p2 ∈ S \ q the triples p1, p2, q and p1, p2, q

+ have
the same orientation.
As S+ has n+1 points it can be pseudo-decomposed

with at most ψd(n+1) faces. LetD+ be such a decom-
position. Note that the face F of D+ which contains
the edge qq+ has to be convex, as otherwise q and q+

would lie on different sides of at least one edge of the
pseudo-triangle F . Now contract the edge qq+ until
q and q+ coincide. By this transformation the face F
loses one edge, but all other faces ofD+ remain combi-
natorially unchanged, that is, either convex polygons
or valid pseudo-triangles. Thus we obtain a pseudo-
decomposition D of S which has either the same num-
ber of faces asD+ or, in the case that F was a triangle,
one less. Therefore ψd(S) ≤ ψd(S+) ≤ ψd(n+1). �

The general lower bound construction as well as a
detailed analysis of upper and lower bounds for small
point sets can be found in the full paper.

3.1 Upper Bound

Our upper bound construction is based on exact
bounds for small point sets. Assume that we are given
a set S with n points and that we know the value of
ψd(k) for some k < n. We choose an extremal point p.
Now we take a line through p that has the whole point
set on one side and perform a circular sweep around
p, splitting off point sets of size k − 1. Together with
p each of these petals contains k points. We have a
total of n

k−1 petals which each can be decomposed
into at most ψd(k) faces. Two adjacent petals can be
combined with a pseudo-triangle into one larger con-
vex set. We apply this method until all of them are
combined and so obtain an upper bound of

ψd(n) ≤
ψd(k) + 1
k − 1 n .

The best current upper bound can be achieved by
combining Theorem 2 with Corollary 5. We con-
struct a decomposition for k = 11 points by pseudo-
triangulating in a pointed way around the convex
polygons guaranteed by Theorem 2. Then Corol-
lary 5 states that ψd(11) = 11 − 2 − 3 = 6 if the
point set contains an empty convex hexagon and
ψd(11) = 11 − 2 − 1 − 2 = 6 if the point set con-
tains an empty convex pentagon and a disjoint empty
convex quadrilateral. This implies

ψd(n) ≤
ψd(11) + 1
11− 1 n =

6 + 1
10

n =
7
10
n .

4 Pseudo-Convex Partitions

An upper bound of ψp(n) ≤ n/4 can be easily estab-
lished: Any four points form either a pseudo-triangle
or a convex quadrilateral and grouping them in x-
sorted order guarantees disjointness.

pp

Figure 5: Petals of size 5.
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Figure 3: A point set S with ψp(S) = n
6 + 1. Figure 4: A partition of S consisting of n

6 +1 faces.

4.1 Lower Bound

Lemma 7 Let S be set of points in convex position
with |S| = 2m, m ≥ 1. We partition S into m pairs of
consecutive points (along the convex hull). Let ψ′p(S)
denote the minimum number of faces in a pseudo-
convex partition of S in which no face contains a pair.
Then ψ′p(S) =

⌈
m
2

⌉
+ 1.

Theorem 8 ψp(n) ≥
⌊

n
6

⌋
+ 1, n ≥ 3.

Proof. We consider the point set S shown in Figure
3. S contains

⌊
n
3

⌋
interior points which are placed

very close to every second convex hull edge. Let P
be a pseudo-convex partition of S using the minimum
number ψp(S) of faces. We say that two consecutive
points p and q of the convex hull form a pair if there
is an interior point close to the edge pq. There are⌊

n
3

⌋
such pairs. We partition the faces of P into two

classes: Class A denotes faces containing at least one
pair. Class B consists of faces of P containing no pair.
Observe that a face of class A contains points of at
most two pairs. Thus, when drawing the faces of A,
there remain at least

⌊
n
3

⌋
− 2|A| unused pairs. There

might also remain additional interior points and other
convex hull points. Since all faces of B are convex re-
moving these additional points from the optimal par-
tition P only can decrease the number of faces of B.
Hence, the number of faces of B is at least the number
of faces needed for the

⌊
n
3

⌋
− 2|A| remainng unused

pairs. By Lemma 7 we need at least (
⌊

n
3

⌋
−2|A|)/2+1

faces for these pairs. Hence, |B| ≥ (
⌊

n
3

⌋
−2|A|)/2+1,

and ψp(S) = |A|+ |B| ≥ |A|+
⌊

n
6

⌋
−|A|+1 ≥

⌊
n
6

⌋
+1.

A partition of S consisting of n
6 + 1 faces is shown in

Figure 4. �

Note: In the proof of Theorem 8 we did not use ceiling
and floor functions to their utmost limit to simplify
the resulting formula. For example with n = 9 we
get from Lemma 7 a lower bound of 2 + |A| and thus
ψp(9) ≥ 3. Similar we get ψp(15) ≥ 4.
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