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Pseudo-Tetrahedral Complexes

Franz Aurenhammer and Hannes Krasser*

1 Introduction

A pseudo-triangulation is a cell complex in the plane
whose cells are pseudo-triangles, i.e., simple polygons
with exactly three convex vertices (so-called corners).
Being an interesting and flexible generalization of tri-
angulations, pseudo-triangulations have found their
place in computational geometry; see e.g. [8, 11, 7, 1]
and references therein.

Unlike triangulations, pseudo-triangulations eluded
a meaningful generalization to higher dimensions so
far. In this paper, we define pseudo-simplices and
pseudo-simplicial complexes in d-space in a way con-
sistent to pseudo-triangulations in the plane. Flip op-
erations in pseudo-complexes are specified, as combi-
nations of flips in pseudo-triangulations [11, 1], and
of bistellar flips in simplicial complexes [9, 5, 4]. Our
results are based on the concept of maximal locally
convex functions on polyhedral domains [1], that al-
lows us to unify several well-known structures, namely
pseudo-triangulations, constrained Delaunay triangu-
lations [3, 14], and regular simplicial complexes [2, 5].
Several implications of our results exist, and challeng-
ing open questions arise.

2 Polytopes and Corners

We give some notation concerning polytopes in
d-space R%. A connected, bounded, and closed sub-
set P of R? is called a d-polytope if P is a d-manifold,
with piecewise linear boundary bd P that is struc-
tured as a (d — 1)-dimensional cell complex. The com-
ponents of bd P of dimension j are called the j-faces
of P. Faces of dimensions d—1, 1, and 0, respectively,
are also called facets, edges, and vertices. We denote
with vert P the set of vertices of P. P is called simple
if P is homeomorphic to a closed ball in R?,

A terminal of P is a point 2 € P such that no line
segment L. C P contains x in its relative interior. All
terminals of P belong to vert P. A terminal v of P
is called a corner of P if there exists a hyperplane
through v that has all edges of P incident to v on a
fixed side. (For d = 2, terminals automatically ful-
fill this requirement and therefore are corners.) All
vertices of the convex hull conv P are corners of P.
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So every d-polytope P has at least d + 1 corners. In
Figure 1, = is a corner, y is a terminal but not a cor-
ner, and z is not a terminal.

Figure 1: 3-polytope with different vertex types

A boundary-connected d-polytope with exactly
d + 1 corners is termed a pseudo-simplex. Every sim-
plex is a pseudo-simplex. For d = 2 and d = 3, re-
spectively, pseudo-simplices will be also called pseudo-
triangles and pseudohedra. Our definition of a pseudo-
triangle is equivalent to the classical definition, see
e.g. [11, 1], which requires exactly 3 polygon vertices
with an internal angle smaller than 7. A pseudo-
complez is a cell complex in R? all whose cells are
pseudo-simplices of dimension d. For d = 2, pseudo-
complexes are pseudo-triangulations.

3 Local Convexity

The theory of maximal locally convex functions is the
key to a derivation of pseudo-complexes. For d = 2,
the relationship between these two concepts has been
observed in [1]. Consider a real-valued function f
on R? whose domain is a simple d-polytope D. Func-
tion f is called locally convex if f is convex on each
line segment L C D.

Let h be a real-valued vector that assigns a
(d + 1)st coordinate h; (called height) to each vertex
v; € vert D. Our interest is in the maximal locally
convex function f* on D which fulfills f*(v;) <h;
for each v; € vert D. The function f* is unique, be-
cause f* is the pointwise maximum of all locally
convex functions which satisfy the constraints in h.
Moreover, f* is continuous in the interior int D of D,
by its local convexity. For d > 3, f* need not be con-
tinuous on bd D, however.

We can show that f* is a piecewise linear function
on D. In fact, f* induces a face-to-face cell com-
plex in D, whose cells are maximal connected sub-
set of D where f* is linear. The continuity of f*
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on int D implies that the faces of f* have piecewise
linear boundaries, and therefore are j-polytopes, for
0<j<d. As D is a simple d-polytope, the bound-
ary of each cell of f* is connected: The existence of
a hole H in a cell contradicts the convexity of f* on
each line segment L C D that crosses the (relative)
boundary of H twice.

Each vertex = of f* either belongs to vert D, or x
is the intersection of a j-face of f* with a (d — j)-face
of D. Accordingly,  will be termed a primary or
a secondary vertex. We extend this terminology to
the cells of f*, by distinguishing whether or not all
corners of a cell are primary vertices.
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Figure 2: Splitting the Schonhardt polytope with f*

Figure 2 illustrates a three-dimensional cell com-
plex induced by f* when D is the Schénhardt poly-
tope [13]. All six vertices of D are corners. Numbers
denote vertex heights. The complex consists of three
non-tetrahedral primary cells. Note the occurrence of
secondary vertices in the relative interior of certain
edges of D.

A vertex wv; €vert D is termed complete if
f*(v;) = h;j. A vertex of f* that is a corner of all
its incident cells is called an allcorner. For instance,
each corner of D is an allcorner of f*.

Lemma 1 (a) All terminals of D are complete.
(b) A vertex where f* is discontinuous cannot be a
corner of any cell. (c) Allcorners of f* are charac-
terized by being vertices of D that are complete and
where f* is continuous. (d) No vertex of f* lies in
int D, or in the relative interior of a facet of D.

The polytope D in Figure 1 serves as an exam-
ple where f* is discontinuous. As heights for D we
choose 1 for vertex y and 0 for the remaining vertices.
Then f*(p) =0 for all p € int D. By Lemma 1(a), we
have f*(y) = 1 because y is a terminal. Thus f* is
discontinuous at y.

Maximal locally convex functions constitute a nat-
ural generalization of convex hulls. Let H be the
point set in Rt that results from lifting vert D by its
height vector h. Denote by lowy the (convex) func-
tion whose graph is the lower convex hull of H, i.e.,
the part of bd conv H visible from —oo on the (d+1)st
coordinate axis.

Theorem 2 If the domain D is convex then we have
f* =lowp, for every height vector h.
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4 Pseudo-Complexes

For a given simple d-polytope D and a height vec-
tor h for vert D, let PC(D,h) denote the poly-
topal cell complex induced by f* in D. We call h
generic (for D) if there exists some e >0 such
that PC(D,h.) =PC(D,h) holds for all possible
e-perturbations h. of h. To ease the exposition, this
property of h will be implicitly assumed henceforth.

We call h convez if lowy (v;) = h; holds for each
v; € vert D. In particular, h is called parabolic if
h; = v? for each i. If h is convex then PC(D, h) shows
several nice properties.

Theorem 3 Let h be a convex height vector. Then
all cells of PC(D,h) are primary cells, pseudo-
simplices, and simple d-polytopes. All primary ver-
tices of PC(D, h) are allcorners. Moreover, [* is con-
tinuous on the entire domain D.

By Theorem 3, locally convex functions generate
pseudo-complexes if the height vector h is convex. In
fact, this is the case for arbitrary h; see Section 5. If D
(and with it, h) is convex then all cells are simplices,
and PC(D,h) is a regular simplicial complex [2, 5]
in D, by Theorem 2. If, in addition, h is parabolic
then the well-known Delaunay simplicial complex [6]
for D is obtained. When h is convex but D is not,
then PC(D, h) need not be simplicial; see Figure 2.
The case d = 2 has been treated in [1]. PC(D,h)
then is a constrained regular pseudo-triangulation of
the simple polygon D. In particular, if h is parabolic,
then the constrained Delaunay triangulation [3] of D
is obtained, which is the Delaunay triangulation [6]
provided D is a convex polygon.

5 Bistellar Pseudoflips

We now investigate the properties of PC(D,h) for
arbitrary height vectors h, by defining flip operations
in pseudo-complexes that result from controlled
changes in h. These operations generalize both the
d-dimensional Lawson flip [9, 4] and the flips in
2-dimensional pseudo-triangulations [11, 1]. From
now on, let n = |vert D|.

Moving Heights Let hg and h; be two (generic)
height vectors for vert D. Assume that hg is convex,
and that hg > h; (elementwise). We continuously de-
form PC(D, hy) into PC(D, hy) and study the changes
in the structure of cells.

To this end, let hy = Ahq + (1 — A)hg, for A in-
creasing from 0 to 1. By Theorem 3, in PC(D, hy)
all primary vertices are complete and are allcorners,
and all cells are primary and are pseudo-simplices.
PC(D, hy) changes its shape exactly at values A
where h) is not generic. Fix such a value A. Con-
sider a cell U of PC(D,hy) which is not a cell
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of PC(D,h)_.), for sufficiently small ¢ > 0. Denote
with PCy_. the restriction of PC(D,hy_.) to U. The
crucial observation is that, for A —e, f* on int U is
determined by its values at the allcorners of PCy_..
This follows from Lemma 1(b). Therefore PCy_. has
exactly d+2 allcorners (apart from special cases which
can be avoided by perturbing hy slightly). In partic-
ular, U has at most d + 2 corners.

In PC(D,hyyc), the polytope U is restructured
into a cell complex PCyy.. The replacement of
PCxr—_c by PCxie is termed a pseudoflip.

Anatomy of Pseudoflips To study the structure
of pseudoflips, let us consider any complex PC(U, h)
with exactly d 4+ 2 allcorners wvi,...,v412. By
Lemma 1(c), full height is assumed at and only at
V1, ...,Vgr2. W.Lo.g., let h contain entries oo for
all other vertices of U. Let h™ be the vector ob-
tained from h by changing the signs of finite entries.
Then, for any generic choice of heights hi,..., hgio
for vy,...,v442, one of the complexes PC(U, h) or
PC(U,h™) has to arise, because the relative position
of the d+2 points (Zl) in R4 already determines f*.

As a consequence, each pseudoflip can be simu-
lated by replacing PC(U, h) by PC(U,h™). Moreover,
as PC(U,h™) has at most d + 2 allcorners, the cells
of PC(U,h™) are pseudo-simplices, provided the same
holds for PC(U, h). (If PC(U, h™) has d+1 allcorners
then its only cell is the pseudo-simplex U.) Recalling
that the original complex PC(D, hg) was a pseudo-
complex, we get an inductive argument showing that
the final complex PC(D, hq) is a pseudo-complex.

We face two different types of pseudoflips. An ez-
changing pseudoflip transforms PC(U, h) into a com-
plex with the same number of allcorners, whereas a
removing pseudoflip transforms PC(U, h) into a sin-
gle cell. (The inverse of a removing pseudoflip is also
considered a valid pseudoflip; we call it an inserting
pseudoflip.) PC(U, h) contains primary cells and, in
general, also secondary cells, because secondary ver-
tices may arise in the relative interior of faces of U.
Unfortunately, neither the number of primary cells
nor the number of secondary cells is bounded by a
function of d. Already for d = 3 there are examples
where ©(k) primary cells and ©(k?) secondary cells
occur, for k = |vert U|. An upper bound for primary
cells in this case is O(k?), see Theorem 4.

For general d and arbitrary complexes PC(D, h),
the number of primary cells is bounded by Theorem 2
and the observation that this number is maximal if D
is convex. The number of secondary cells can be
shown to be finite but remains unclear. Concerning
the total number of pseudoflips, we can show that each
(d + 2)-tuple of vertices of D gives rise to at most one
pseudoflip when heights are moved as above. We con-
clude:

Theorem 4 PC(D,h) is a pseudo-complex for ar-
bitrary (generic) h. The number of primary cells
of PC(D, h) is O(n/%/21). Given two height vectors h
and h', the distance between PC(D, h) and PC(D,h')
by pseudoflips is O(n+2).

A challenging open question is whether pseudoflip
sequences between simplicial complexes do exists
such that cell sizes are bounded by O(d). The
complexity of pseudoflips does not depend on n in
this case.

Examples  We illustrate some pseudoflips for
d = 3. The 3-polytope U where a flip takes place has
at most 5 corners; they are labeled by numbers in
the following figures. The pseudoflips are viewed best
when imagining that the height of vertex 4 is lowered.

A

Figure 3: Exchanging pseudoflip

Figure 3 shows an exchanging pseudoflip. Before
the flip, U contains the two tetrahedral cells 1235
and 1345. They are are adjacent in the triangular
facet 135. (The tetrahedron 1245 avoids the interior
of U and yields no cell.) After the flip, which de-
stroys the facet 135 and creates the pseudo-triangular
facet 234z, two pseudohedra arise as cells. Their cor-
ners are 1,2,3,4 and 2, 3,4, 5, respectively. The sec-
ondary vertex x arises as a noncorner of both cells.
All involved cells are primary cells.

Figure 4: Pseudoflip generating a secondary cell

The exchanging pseudoflip in Figure 4 is more com-
plicated. Again, U contains only two cells before the
flip, the tetrahedron 1345 and the pseudohedron with
corners 1,2,3,5 and the noncorner a. Both cells are
primary cells. Their common triangular facet 135 is
destroyed in the flip. After the flip, two new pri-
mary cells are present, namely, the pseudohedra with
corners 1,2,3,4 and 2,3,4,5, respectively. In ad-
dition, the tetrahedron 145x arises as a secondary
cell. Its corner x is the secondary vertex where the
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pseudo-triangular facet with corners 2, 3,4 intersects
the edge 1la.

Figure 5: Pseudoflip that creates a tunnel

Figure 5 depicts an exchanging pseudoflip that
creates a non-simple cell. Three primary cells are
present before the flip: The tetrahedra 1234 and 1235,
and the pseudohedron with corners 2,3,4,5 and non-
corners a,b,c. These cells are pairwise adjacent in
triangular facets which are destroyed in the flip. A
single facet F with corners 1,4,5 and the secondary
vertices z,y,z as noncorners is created. As zyz is
a hole, F' is not a valid pseudo-triangle, but rather
a polygonal region with three corners. Two primary
cells are adjacent in F'. The cell with corners 1,2,4,5
contains a tunnel, defined by the edges 2z, ay, and bz.

6 Extensions

Several extensions of our results exist. For fixed D,
consider the class of pseudo-complexes

R(D) = {PC | 3 h with PC = PC(D, h)}.

The existence of a convex n-polytope can be estab-
lished that represents all the members of R(D). This
generalizes the polytope constructions in [10] (the
associahedron) and in [2] (the secondary polytope),
which concern the regular simplicial complexes for
convex domains D, as well as the polytope in [1],
for constrained regular pseudo-triangulations of sim-
ple polygons D. In particular, the subclass

M(D) ={PC |3 h convex with PC = PC(D,—h)}

constitutes a generalization to R? of minimum (or
pointed) pseudo-triangulations [11].

A pseudohedron need not be tetrahedrizable. Still,
pseudo-complexes for convex height vectors provide a
way of decomposing a given nonconvex polytope in
3-space into O(n?) tetrahedra, when secondary ver-
tices are used as Steiner points.

Pseudo-complexes give rise to several burning
questions. A question of major interest in motion
planning applications [8] is whether visible space be-
tween polyhedral objects can be tiled and maintained
with pseudo-simplices and pseudoflips, respectively.
A related important problem is whether any two
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simplicial complexes in d-space can be transformed
into each other by pseudoflips. For Lawson flips [9],
the answer is negative for d > 6, and unknown for
3 < d <55 see [12].
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