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Pseudo-Tetrahedral Complexes

Franz Aurenhammer and Hannes Krasser∗

1 Introduction

A pseudo-triangulation is a cell complex in the plane
whose cells are pseudo-triangles, i.e., simple polygons
with exactly three convex vertices (so-called corners).
Being an interesting and flexible generalization of tri-
angulations, pseudo-triangulations have found their
place in computational geometry; see e.g. [8, 11, 7, 1]
and references therein.
Unlike triangulations, pseudo-triangulations eluded

a meaningful generalization to higher dimensions so
far. In this paper, we define pseudo-simplices and
pseudo-simplicial complexes in d-space in a way con-
sistent to pseudo-triangulations in the plane. Flip op-
erations in pseudo-complexes are specified, as combi-
nations of flips in pseudo-triangulations [11, 1], and
of bistellar flips in simplicial complexes [9, 5, 4]. Our
results are based on the concept of maximal locally
convex functions on polyhedral domains [1], that al-
lows us to unify several well-known structures, namely
pseudo-triangulations, constrained Delaunay triangu-
lations [3, 14], and regular simplicial complexes [2, 5].
Several implications of our results exist, and challeng-
ing open questions arise.

2 Polytopes and Corners

We give some notation concerning polytopes in
d-space Rd. A connected, bounded, and closed sub-
set P of Rd is called a d-polytope if P is a d-manifold,
with piecewise linear boundary bd P that is struc-
tured as a (d− 1)-dimensional cell complex. The com-
ponents of bd P of dimension j are called the j-faces
of P . Faces of dimensions d−1, 1, and 0, respectively,
are also called facets, edges, and vertices. We denote
with vert P the set of vertices of P . P is called simple
if P is homeomorphic to a closed ball in Rd.
A terminal of P is a point x ∈ P such that no line

segment L ⊂ P contains x in its relative interior. All
terminals of P belong to vert P . A terminal v of P
is called a corner of P if there exists a hyperplane
through v that has all edges of P incident to v on a
fixed side. (For d = 2, terminals automatically ful-
fill this requirement and therefore are corners.) All
vertices of the convex hull conv P are corners of P .
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So every d-polytope P has at least d + 1 corners. In
Figure 1, x is a corner, y is a terminal but not a cor-
ner, and z is not a terminal.
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Figure 1: 3-polytope with different vertex types

A boundary-connected d-polytope with exactly
d+ 1 corners is termed a pseudo-simplex . Every sim-
plex is a pseudo-simplex. For d = 2 and d = 3, re-
spectively, pseudo-simplices will be also called pseudo-
triangles and pseudohedra. Our definition of a pseudo-
triangle is equivalent to the classical definition, see
e.g. [11, 1], which requires exactly 3 polygon vertices
with an internal angle smaller than π. A pseudo-
complex is a cell complex in Rd all whose cells are
pseudo-simplices of dimension d. For d = 2, pseudo-
complexes are pseudo-triangulations.

3 Local Convexity

The theory of maximal locally convex functions is the
key to a derivation of pseudo-complexes. For d = 2,
the relationship between these two concepts has been
observed in [1]. Consider a real-valued function f
on Rd whose domain is a simple d-polytope D. Func-
tion f is called locally convex if f is convex on each
line segment L ⊂ D.
Let h be a real-valued vector that assigns a

(d+ 1)st coordinate hi (called height) to each vertex
vi ∈ vert D. Our interest is in the maximal locally
convex function f∗ on D which fulfills f∗(vi) ≤ hi

for each vi ∈ vert D. The function f∗ is unique, be-
cause f∗ is the pointwise maximum of all locally
convex functions which satisfy the constraints in h.
Moreover, f∗ is continuous in the interior int D of D,
by its local convexity. For d ≥ 3, f∗ need not be con-
tinuous on bd D, however.
We can show that f∗ is a piecewise linear function

on D. In fact, f∗ induces a face-to-face cell com-
plex in D, whose cells are maximal connected sub-
set of D where f∗ is linear. The continuity of f∗
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on int D implies that the faces of f∗ have piecewise
linear boundaries, and therefore are j-polytopes, for
0 ≤ j ≤ d. As D is a simple d-polytope, the bound-
ary of each cell of f∗ is connected: The existence of
a hole H in a cell contradicts the convexity of f∗ on
each line segment L ⊂ D that crosses the (relative)
boundary of H twice.
Each vertex x of f∗ either belongs to vert D, or x

is the intersection of a j-face of f∗ with a (d− j)-face
of D. Accordingly, x will be termed a primary or
a secondary vertex. We extend this terminology to
the cells of f∗, by distinguishing whether or not all
corners of a cell are primary vertices.
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Figure 2: Splitting the Schönhardt polytope with f∗

Figure 2 illustrates a three-dimensional cell com-
plex induced by f∗ when D is the Schönhardt poly-
tope [13]. All six vertices of D are corners. Numbers
denote vertex heights. The complex consists of three
non-tetrahedral primary cells. Note the occurrence of
secondary vertices in the relative interior of certain
edges of D.
A vertex vi ∈ vert D is termed complete if

f∗(vi) = hi. A vertex of f∗ that is a corner of all
its incident cells is called an allcorner . For instance,
each corner of D is an allcorner of f∗.

Lemma 1 (a) All terminals of D are complete.
(b) A vertex where f∗ is discontinuous cannot be a
corner of any cell. (c) Allcorners of f∗ are charac-
terized by being vertices of D that are complete and
where f∗ is continuous. (d) No vertex of f∗ lies in
int D, or in the relative interior of a facet of D.

The polytope D in Figure 1 serves as an exam-
ple where f∗ is discontinuous. As heights for D we
choose 1 for vertex y and 0 for the remaining vertices.
Then f∗(p) = 0 for all p ∈ int D. By Lemma 1(a), we
have f∗(y) = 1 because y is a terminal. Thus f∗ is
discontinuous at y.
Maximal locally convex functions constitute a nat-

ural generalization of convex hulls. Let H be the
point set in Rd+1 that results from lifting vert D by its
height vector h. Denote by lowH the (convex) func-
tion whose graph is the lower convex hull of H, i.e.,
the part of bd conv H visible from −∞ on the (d+1)st
coordinate axis.

Theorem 2 If the domain D is convex then we have
f∗ = lowH , for every height vector h.

4 Pseudo-Complexes

For a given simple d-polytope D and a height vec-
tor h for vert D, let PC(D,h) denote the poly-
topal cell complex induced by f∗ in D. We call h
generic (for D) if there exists some ε > 0 such
that PC(D,hε) = PC(D,h) holds for all possible
ε-perturbations hε of h. To ease the exposition, this
property of h will be implicitly assumed henceforth.
We call h convex if lowH(vi) = hi holds for each

vi ∈ vert D. In particular, h is called parabolic if
hi = v2

i for each i. If h is convex then PC(D,h) shows
several nice properties.

Theorem 3 Let h be a convex height vector. Then
all cells of PC(D,h) are primary cells, pseudo-
simplices, and simple d-polytopes. All primary ver-
tices of PC(D,h) are allcorners. Moreover, f∗ is con-
tinuous on the entire domain D.

By Theorem 3, locally convex functions generate
pseudo-complexes if the height vector h is convex. In
fact, this is the case for arbitrary h; see Section 5. IfD
(and with it, h) is convex then all cells are simplices,
and PC(D,h) is a regular simplicial complex [2, 5]
in D, by Theorem 2. If, in addition, h is parabolic
then the well-known Delaunay simplicial complex [6]
for D is obtained. When h is convex but D is not,
then PC(D,h) need not be simplicial; see Figure 2.
The case d = 2 has been treated in [1]. PC(D,h)
then is a constrained regular pseudo-triangulation of
the simple polygon D. In particular, if h is parabolic,
then the constrained Delaunay triangulation [3] of D
is obtained, which is the Delaunay triangulation [6]
provided D is a convex polygon.

5 Bistellar Pseudoflips

We now investigate the properties of PC(D,h) for
arbitrary height vectors h, by defining flip operations
in pseudo-complexes that result from controlled
changes in h. These operations generalize both the
d-dimensional Lawson flip [9, 4] and the flips in
2-dimensional pseudo-triangulations [11, 1]. From
now on, let n = |vert D|.

Moving Heights Let h0 and h1 be two (generic)
height vectors for vert D. Assume that h0 is convex,
and that h0 > h1 (elementwise). We continuously de-
form PC(D,h0) into PC(D,h1) and study the changes
in the structure of cells.
To this end, let hλ = λh1 + (1− λ)h0, for λ in-

creasing from 0 to 1. By Theorem 3, in PC(D,h0)
all primary vertices are complete and are allcorners,
and all cells are primary and are pseudo-simplices.
PC(D,hλ) changes its shape exactly at values λ
where hλ is not generic. Fix such a value λ. Con-
sider a cell U of PC(D,hλ) which is not a cell
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of PC(D,hλ−ε), for sufficiently small ε > 0. Denote
with PCλ−ε the restriction of PC(D,hλ−ε) to U . The
crucial observation is that, for λ− ε, f∗ on int U is
determined by its values at the allcorners of PCλ−ε.
This follows from Lemma 1(b). Therefore PCλ−ε has
exactly d+2 allcorners (apart from special cases which
can be avoided by perturbing h0 slightly). In partic-
ular, U has at most d+ 2 corners.
In PC(D,hλ+ε), the polytope U is restructured

into a cell complex PCλ+ε. The replacement of
PCλ−ε by PCλ+ε is termed a pseudoflip.

Anatomy of Pseudoflips To study the structure
of pseudoflips, let us consider any complex PC(U,h)
with exactly d + 2 allcorners v1, . . . , vd+2. By
Lemma 1(c), full height is assumed at and only at
v1, . . . , vd+2. W.l.o.g., let h contain entries ∞ for
all other vertices of U . Let h− be the vector ob-
tained from h by changing the signs of finite entries.
Then, for any generic choice of heights h1, . . . , hd+2

for v1, . . . , vd+2, one of the complexes PC(U,h) or
PC(U,h−) has to arise, because the relative position
of the d+2 points

(
vi
hi

)
in Rd+1 already determines f∗.

As a consequence, each pseudoflip can be simu-
lated by replacing PC(U,h) by PC(U,h−). Moreover,
as PC(U,h−) has at most d + 2 allcorners, the cells
of PC(U,h−) are pseudo-simplices, provided the same
holds for PC(U,h). (If PC(U,h−) has d+1 allcorners
then its only cell is the pseudo-simplex U .) Recalling
that the original complex PC(D,h0) was a pseudo-
complex, we get an inductive argument showing that
the final complex PC(D,h1) is a pseudo-complex.
We face two different types of pseudoflips. An ex-

changing pseudoflip transforms PC(U,h) into a com-
plex with the same number of allcorners, whereas a
removing pseudoflip transforms PC(U,h) into a sin-
gle cell. (The inverse of a removing pseudoflip is also
considered a valid pseudoflip; we call it an inserting
pseudoflip.) PC(U,h) contains primary cells and, in
general, also secondary cells, because secondary ver-
tices may arise in the relative interior of faces of U .
Unfortunately, neither the number of primary cells
nor the number of secondary cells is bounded by a
function of d. Already for d = 3 there are examples
where Θ(k) primary cells and Θ(k2) secondary cells
occur, for k = |vert U |. An upper bound for primary
cells in this case is O(k2), see Theorem 4.
For general d and arbitrary complexes PC(D,h),

the number of primary cells is bounded by Theorem 2
and the observation that this number is maximal if D
is convex. The number of secondary cells can be
shown to be finite but remains unclear. Concerning
the total number of pseudoflips, we can show that each
(d+ 2)-tuple of vertices of D gives rise to at most one
pseudoflip when heights are moved as above. We con-
clude:

Theorem 4 PC(D,h) is a pseudo-complex for ar-
bitrary (generic) h. The number of primary cells
of PC(D,h) is O(n�d/2�). Given two height vectors h
and h′, the distance between PC(D,h) and PC(D,h′)
by pseudoflips is O(nd+2).

A challenging open question is whether pseudoflip
sequences between simplicial complexes do exists
such that cell sizes are bounded by O(d). The
complexity of pseudoflips does not depend on n in
this case.

Examples We illustrate some pseudoflips for
d = 3. The 3-polytope U where a flip takes place has
at most 5 corners; they are labeled by numbers in
the following figures. The pseudoflips are viewed best
when imagining that the height of vertex 4 is lowered.
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Figure 3: Exchanging pseudoflip

Figure 3 shows an exchanging pseudoflip. Before
the flip, U contains the two tetrahedral cells 1235
and 1345. They are are adjacent in the triangular
facet 135. (The tetrahedron 1245 avoids the interior
of U and yields no cell.) After the flip, which de-
stroys the facet 135 and creates the pseudo-triangular
facet 234x, two pseudohedra arise as cells. Their cor-
ners are 1, 2, 3, 4 and 2, 3, 4, 5, respectively. The sec-
ondary vertex x arises as a noncorner of both cells.
All involved cells are primary cells.
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Figure 4: Pseudoflip generating a secondary cell

The exchanging pseudoflip in Figure 4 is more com-
plicated. Again, U contains only two cells before the
flip, the tetrahedron 1345 and the pseudohedron with
corners 1, 2, 3, 5 and the noncorner a. Both cells are
primary cells. Their common triangular facet 135 is
destroyed in the flip. After the flip, two new pri-
mary cells are present, namely, the pseudohedra with
corners 1, 2, 3, 4 and 2, 3, 4, 5, respectively. In ad-
dition, the tetrahedron 145x arises as a secondary
cell. Its corner x is the secondary vertex where the
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pseudo-triangular facet with corners 2, 3, 4 intersects
the edge 1a.

1

2

5

1

1

2

5

5

a

c

b

c

b
a

x y

3
3

4

4

4

z

Figure 5: Pseudoflip that creates a tunnel

Figure 5 depicts an exchanging pseudoflip that
creates a non-simple cell. Three primary cells are
present before the flip: The tetrahedra 1234 and 1235,
and the pseudohedron with corners 2, 3, 4, 5 and non-
corners a, b, c. These cells are pairwise adjacent in
triangular facets which are destroyed in the flip. A
single facet F with corners 1, 4, 5 and the secondary
vertices x, y, z as noncorners is created. As xyz is
a hole, F is not a valid pseudo-triangle, but rather
a polygonal region with three corners. Two primary
cells are adjacent in F . The cell with corners 1, 2, 4, 5
contains a tunnel, defined by the edges 2x, ay, and bz.

6 Extensions

Several extensions of our results exist. For fixed D,
consider the class of pseudo-complexes

R(D) = {PC | ∃ h with PC = PC(D,h)}.

The existence of a convex n-polytope can be estab-
lished that represents all the members of R(D). This
generalizes the polytope constructions in [10] (the
associahedron) and in [2] (the secondary polytope),
which concern the regular simplicial complexes for
convex domains D, as well as the polytope in [1],
for constrained regular pseudo-triangulations of sim-
ple polygons D. In particular, the subclass

M(D) = {PC | ∃ h convex with PC = PC(D,−h)}

constitutes a generalization to Rd of minimum (or
pointed) pseudo-triangulations [11].
A pseudohedron need not be tetrahedrizable. Still,

pseudo-complexes for convex height vectors provide a
way of decomposing a given nonconvex polytope in
3-space into O(n2) tetrahedra, when secondary ver-
tices are used as Steiner points.
Pseudo-complexes give rise to several burning

questions. A question of major interest in motion
planning applications [8] is whether visible space be-
tween polyhedral objects can be tiled and maintained
with pseudo-simplices and pseudoflips, respectively.
A related important problem is whether any two

simplicial complexes in d-space can be transformed
into each other by pseudoflips. For Lawson flips [9],
the answer is negative for d ≥ 6, and unknown for
3 ≤ d ≤ 5; see [12].
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