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Quality Triangulations Made Smaller

Alper Üngör∗

Abstract

We study alternative types of Steiner points (to circum-

centers) for computing quality guaranteed Delaunay tri-

angulations in three dimensions. We show through exper-

iments that their effective use results in smaller (in the

number of tetrahedra) triangulations than the output of

the traditional circumcenter refinement methods.

1 Introduction

We consider the following optimization problem:
Compute the smallest size triangulation of a given do-
main such that all the simplices in the triangulation
are of good quality. Quality constraint is motivated
by the numerical methods used in many engineering
applications. A simplex is said to be good if its radius-
edge ratio (circumradius over shortest edge length) is
bounded from above. Under the quality constraint,
our objective is to make the triangulation size as small
as possible for their efficient use in the applications.
There has been quite a few solutions for this problem
[1, 2, 6, 8, 9]. Earliest algorithms that provide both
size optimality (within a constant factor) and quality
guarantee used balanced quadtrees to generate first
a nicely spread point set and then the Delaunay tri-
angulation of these points [1]. Subsequently, Delau-
nay refinement techniques are developed based on an
incremental point insertion strategy and provide the
same theoretical guarantees [8]. Delaunay refinement
has become much more popular than the quadtree-
based algorithms mostly due to its superior perfor-
mance in generating smaller triangulations. Due to
its importance in a wide range of applications, this
problem is frequently revisited and several versions of
the Delaunay refinement is suggested [2, 6, 8, 9].
Delaunay refinement method involves first com-

puting an initial Delaunay triangulation of the in-
put domain, and then iteratively adding points called
Steiner points to improve the quality of the triangula-
tion. Traditionally, circumcenters of bad simplices are
used as Steiner points [8, 9]. We recently introduced a
new type of Steiner points, called off-centers, as an al-
ternative to circumcenters and propose a new variant
of the Delaunay refinement algorithm in two dimen-
sions [11]. We showed that the off-center insertion al-
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gorithm generates size-optimal quality-guaranteed tri-
angulations. Moreover, experimental study indicates
that our refinement algorithm with off-centers inserts
fewer Steiner points than the circumcenter insertion
algorithms and results in smaller triangulations. This
implies substantial reduction not only in triangulation
time, but also in the running time of the subsequent
application algorithms. In this extended abstract, we
present recent research progress on off-center based
Delaunay refinement. We extend the off-center def-
inition to three dimensions and present preliminary
experimental results.

2 Quality Triangulations in 2D

Replacing the circumcenters with off-centers enabled
us to make progress both on theoretical and practical
fronts. In theory, using off-centers, we first improved
the earlier parallel complexity results [10], then de-
signed the first time-optimal Delanuay refinement al-
gorithm [5]. In practice, off-center insertion algorithm
results in significant reduction in the output size (see
Figure 1). It is now used in the popular Delaunay
refinement software Triangle1.

Figure 1: Airfoil mesh. Smallest angle in both output trian-
gulations is 31◦. Circumcenter insertion introduces 624 Steiner
points resulting a mesh with 1222 triangles (left). Off-center
insertion introduces only 359 Steiner points resulting a mesh
with 699 triangles (right).

Off-center, c, of a bad triangle pqr is defined as the
closest point to the circumcenter of pqr on the bisector
of the shortest edge, say pq, such that pqc is (barely)
a good triangle [11]. In our experiments we observed
that, a perturbation from this theoretical definition
gives the best results. We control the amount of per-
turbation by a parameter called α1, which rescales the
distance between the off-center and the shortest edge.
While α1 = 1 means that there is no perturbation,

1Available at http://www-2.cs.cmu.edu/∼quake/triangle.html
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Figure 2: Impact of α1 on the output size for random point
(top) and airfoil (bottom) data sets.

α1 < 1 perturb the off-center on the bisector towards
the shortest edge, and α1 > 1 move it away.
While the best choice for α1 varies as we change the

radius-edge ratio threshold and the data set, there is
a clear pattern in the performance behavior. There
is a sudden large shift in the output size from small
to large as α1 becomes larger than 1 (Figure 2). Best
performance is usually observed when α1 is in the
interval (0.95, 1). Note that with a perturbation we
not only make sure that the new triangle formed by
the shortest edge points and the off-center is of good
quality but also potentially fix more bad triangles at
the same iteration.

3 Quality Triangulations in 3D

An extension of the circumcenter insertion algorithm
to three dimensions is given by Shewchuk [9]. We
briefly review this algorithm below and refer to [3, 9]
for details.

3.1 Delaunay Refinement with Circumcenters

In three dimensions, a collection Ω of vertices, seg-
ments, and facets is called a piecewise linear complex
(PLC) if (i) all lower dimensional elements on the
boundary of an element in Ω also belong to Ω, and
(ii) if any two elements intersect, then their intersec-
tion is a lower dimensional element in Ω [7]. We first

compute the Delaunay triangulation of the set of ver-
tices of the input PLC Ω. Then, we add new points
(i) to recover the edges and facets that are not con-
formed by the Delaunay triangulation and (ii) to im-
prove the quality of the triangulation. A point is said
to encroach upon a simplex if it is inside the smallest
sphere that contains the simplex. A tetrahedron is
considered bad if its radius-edge ratio is larger than
a pre-specified constant β ≥ 2. We maintain the De-
launay triangulation as we add new points using the
following rules.

1. If a segment is encroached upon, we add its mid-
point.

2. If a facet is encroached upon, we add its circum-
center unless Rule 1 applies.

3. If a tetrahedron is of bad quality, we add its cir-
cumcenter unless Rule 1 or 2 applies.

3.2 Delaunay Refinement with Off-centers

Here, we describe two new types of off-centers as
Steiner points for three dimensional refinement.

3.2.1 Off-center on triangle bisector

Let pqr be the face of pqrs with the smallest circum-
radius. Let a be the circumcenter of the triangle pqr,
and c be the circumcenter of the tetrahedron pqrs.
We call the ray that starts from a and goes through
c, the bisector of the triangle pqr. We define the
Type I off-center to be the circumcenter of pqrs if
the radius-edge-ratio of pqrc is smaller than or equal
to β. Otherwise, the Type I off-center is the point
on the bisector of pqr, which makes the radius-edge
ratio of the triangle based on p, q, r and the off-center
itself exactly β (shown as b in Figure 3 (a)).
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Figure 3: Off-center on triangle and edge bisectors.

Let pq be the shortest edge of pqr and t be the
circumradius of pqr. We compute the location of b by
rescaling the length of the vector c− a to |ab|:

|ab| = α2

√
2β2|pq|2 − t2 + 2

√
β2|pq|2 (β2|pq|2 − t2)

‖c− a‖2
,
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where α2 ≤ 1 is the perturbation factor, similar to
the one described in Section 2 for two dimensional
off-center insertion. The choice of α2 = 1 means that
the tetrahedron pqrb is just good. Our experiments
show that a good choice for α2 is 0.9.
Note that we use this type of off-centers only if

β2|pq|2 > t2. Otherwise, the radius-edge ratio β can-
not be satisfied with the location of b.

3.2.2 Off-center on edge bisector

The line that goes through the midpoint of an edge of
a tetrahedron and its circumcenter is called the bisec-
tor of the edge. Given a bad tetrahedron pqrs, sup-
pose that its shortest edge is pq. Let c denote the cir-
cumcenter of pqrs. We define the Type II off-center
to be the circumcenter of pqrs if the radius-edge-ratio
of pqc is smaller than or equal to β. Otherwise, the
Type II off-center is the point on the bisector (and in-
side the circumsphere), which makes the radius-edge
ratio of the triangle based on p, q and the off-center
itself exactly β (shown as b in Figure 3 (b)). We com-
pute the length of ab as follows:

|ab| = α3

(
β +

√
β2 − 1/4

)
|pq|,

where α3 is the perturbation factor.
When α3 ≤ 1, diametral sphere of pqb has radius

β|pq|, hence tetrahedra formed by p, q, b, and a fourth
point x can be a good tetrahedron. As the value of
α3 approaches to 1, the chances of pqbx being a good
tetrahedron converges to 0. Experimentally, we found
that a good choice for α3 is 0.6. Note that the factor
multiplying |pq| above can be precomputed.

3.2.3 Algorithm

The structure of the Delaunay refinement algorithm
as presented in Section 3.1, remains the same. We
just replace the type of Steiner points used. The two
types of off-centers give us the opportunity to explore
several versions of the algorithm. We can use a single
(either) type of off-center, or both. We give a com-
parison of these three approaches in the next section.
When facets on the boundary are to be split, we use
the two-dimensional off-center insertion algorithm.

3.2.4 Experiments

We implemented the Delaunay refinement with off-
centers by replacing the circumcenter procedure in
the Pyramid software. Computing off-centers and cir-
cumcenters are very similar and take roughly the same
time. Hence, savings in the number of Steiner points
reflects the amount of savings in triangulation time.
It is known that the insertion order of the Steiner

points has an impact on the output mesh size. In this
study, for fairness of comparison, we use the same or-
dering strategy (larger radius-edge ratio first) for both
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Figure 4: Output size ratio with respect to radius-edge ratio
constraint for the tiny feature in the middle of a box (top) and
ten thousand points on an ellipsoid (bottom) data sets..

the circumcenter and the off-center insertion schemes.
We shall note that there is room for further improve-
ment by using a more appropriate ordering strategy
for the off-center insertion method.
Figure 4 presents a summary of our experiments on

two data sets. First data set consists of a tiny feature
(two vertices within a distance of 10−4) located at
the center of a unit box. Second data set consists of
10,000 points randomly located on the surface of an
ellipsoid, which is contained inside a bounding box.
We report the ratio of the output size Mc/Mo, where
Mc and Mo are the number of elements generated by
the circumcenter and the off-center insertion methods,
respectively. We ran experiments on various data sets.
In most cases, the difference in the output is visible
(see Figure 5). We summarize our observations as
follows:

• We get significant size improvements with the use
of off-centers, especially when there is grading in
the mesh (due to relatively small input features
with respect to the domain size).

• Use of both type of off-centers or the use of Type

II off-centers alone outperforms the use of Type

I off-centers alone, which in turn outperforms the
use of circumcenters.
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Using circumcenters Using off-centers

Figure 5: Input consists of 20 points and 6 facets. Largest
radius-edge ratio in both triangulations is 15. The Pyramid soft-
ware inserted 785 circumcenters resulting 1343 edges and 392
tetrahedra (left). Our algorithm inserted only 322 off-centers
resulting 797 edges and 219 tetrahedra (right).

• Output size ratio Mc/Mo varies largely (more so
than in two dimensions) as we change data sets.

• Performance behavior with respect to radius-
edge ratio constraint (Figure 4) is somewhat dif-
ferent than that pattern in two dimensions [11],
where we got the best size improvements for the
smallest radius-edge ratio values.

4 Discussions

Our experimental study of the off-center insertion al-
gorithm in three dimensions is by no means complete.
Here, we described two types of off-centers as Steiner
points and present how effective off-center insertion
can be for computing small size quality-guaranteed
triangulations. We should note that, off-center in-

sertion do not always output smaller triangulations
than the output of circumcenter insertion, especially
when the perturbation factors α1, and α2 are not care-
fully chosen. We believe that it is worth to explore a
perturbation strategy based on the local point distri-
bution. In fact, our goal is to combine the off-center
insertion algorithm with the perturbation based sliver
removal approach presented in [4] to compute small
size sliver-free triangulations in three dimensions.
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