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Discrete Curvatures and Gauss Maps for Polyhedral Surfaces
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Abstract

The paper concerns the problem of correct curvatures
estimates directly from polygonal meshes. We present
a new algorithm that allows the construction of un-
ambiguous Gauss maps for a large class of polyhedral
surfaces, including surfaces of non-convex objects and
even non-manifold surfaces. The resulting Gauss map
provides shape recognition and curvature characteri-
sation of the polyhedral surface (polygonal mesh) and
can be used further for optimising the mesh or for de-
veloping subdivision schemes.

1 Introduction

In many applications a physical object is represented
by discrete data, obtained by some measurement sys-
tem. A polyhedral model (a triangular mesh, piece-
wise linear surface) is the easiest way to obtain a
preliminary sketch of the given object. A solid ob-
ject is represented by its boundary, i.e. by the sur-
face that bounds the object. Triangular or polygo-
nal meshes are commonly used in modern computer-
related applications to represent surfaces in three-
dimensional space. Therefore, there is a substantial
need for accurate estimates of geometric attributes
such as surface area, normal vectors, and curva-
tures directly from a mesh. A smooth surface S is
uniquely characterised and quantified by the metric
tensor and by the Weingarten map or the shape op-
erator [Kuhn02]. The shape operator is the second-
order invariant (in other words, curvature) that com-
pletely determines the shape of the surface S. In re-
cent years significant efforts have been made to de-
fine the analogues of differential geometry concepts
on meshes that imitate those of a smooth surface
([Alb96, Bor03, Dyn01, Malt02, Mey03]). Among
those concepts surface curvatures are most important.
Surface curvatures are basic measures to describe the
local shape of a smooth surface. However, a mesh
(a polyhedral surface) is not smooth, and there is
still no consensus about the most appropriate way
of estimating such geometric quantities as curvatures.
On the other hand, methods are being developed to
capture curvature information without referring to
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higher-order formulas of differential geometry. These
methods are based on the discrete curvature concepts
and are of growing interest for geometric modelling
[Malt02, Alb03, Dyn01, Mey03]. Discrete curvatures
can be computed directly from the polygonal mesh.
The principal difference to smooth surfaces is that
the curvatures in polyhedral surfaces are concentrated
around the vertices and along the edges.
If we think of a polyhedral surface as an approxima-
tion of a smooth surface, then, informally speaking,
curvatures of a domain of the underlying smooth sur-
face are ‘glued’ together in the corresponding domain
of a polyhedral surface.
Therefore, analogue measures of curvature in a piece-
wise linear setting should be analogues of integral for-
mulae for curvature in a ‘smooth’ setting and should
preserve integral relations for curvature, such as
the Gauss-Bonnet theorem ([Br79, Banch70, Alb96].
Such analogues exist and were introduced long ago
in the frames of the theory of non-regular surfaces
(see an overview in [Alb96]). These analogues were
discussed in detail in [Br79], where the authors also
compare discrete curvatures with their smooth coun-
terparts.
In the last five-six years the amount of papers that ex-
plore discrete curvatures in one or another context has
increased significantly. Much attention is paid to the
discrete Gaussian curvature, known also as the angle
deficit. The angle deficit is used to estimate the Gauss
curvature of smooth surfaces. In [Bor03] the problem
of the correct estimation of the Gauss curvature is in-
vestigated in detail, and they show that approaches
based on the use of normalized angular deficits are
often erroneous, and can be applied correctly only if
the geometry of meshes is precisely controlled. We
agree with them, and in this paper we highlight why
the angular deficit is neither sufficient to estimate the
Gaussian curvature of the underlying smooth surface
nor to capture the curvature information of a poly-
hedral surface. Loosely speaking, the reason is that
there are more curvatures for polyhedral surfaces than
for smooth ones [Br79, Alb96, Alb03]. This fact is still
not fully acknowledged in geometric applications, but
without addressing it, it is impossible to develop cor-
rect curvature estimates.
Besides the need to derive correct curvature estimates
directly from polygonal meshes, there is also a need
for visualisation of an object in order to explore com-
plex shapes and emphasize hidden details. We pro-
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pose an approach that addresses both needs, and
that empowers us to correctly and consistently de-
scribe and visualise complex 3D shapes based on cur-
vature properties. Our method to characterise sur-
face shape is based on constructing the Gauss map
directly from the polygonal mesh, an area of research
with still scarce and ambiguous results for non-convex
objects [Low02]. The resulting Gauss map provides a
description of the surface by determining its domains
with respect to incorporated curvatures. Each domain
can be split up into uniquely determined sub-domains;
therefore each surface can be associated with the in-
troduced Gauss map signature, abbreviated as GMS.
The GMS extracts convex, concave and saddle regions
in the underlying surface. These regions are often only
implicitly present in a polyhedral surface, and cannot
be determined by the sign of the angle deficit only.
The GMS method besides shape recognition and de-
scription can be used for optimisation of the underly-
ing model or for developing subdivision schemes. The
method provides also a better insight into the geomet-
ric structure of complex triangle meshes, by describing
various vertex types, some of them with a very com-
plex GMS. A good understanding of the geometry of
meshes is a step towards more robust mesh manipula-
tion algorithms. Finally, the proposed GMS method
is simple to compute, easy to view dynamically and
effective in visualising complex polyhedral surfaces.

2 Polyhedral Surfaces: Discrete curvatures and
Gauss map

By a polyhedral surface we understand a triangu-
lated polyhedral surface. Designating V as a finite
point set in three-dimensional space, V = {Vi, i =
1, . . . , n}, we denote by P(V) a polyhedral surface
with the vertex set V. The term polyhedron refers
to a closed polyhedral surface. In such a setting a
polyhedron is bounded, but might be non-simple, i.e.
non-homeomorphic to a sphere, as well as being multi-
connected and self-intersecting, and its interior vol-
ume is not necessarily part of the polyhedron. There-
fore, a polyhedron is not necessarily a solid body.
Given a polyhedron P(V), the set of its vertices is
denoted by V , the edges by E, and the faces by F .

Definition 1 The star Str(ν) of a vertex ν is the
union of all the faces and edges that contain the ver-
tex, and the link Lnk(ν) of the star (the boundary of
the star) is the union of all those edges of the faces of
the star Str(ν) that are not incident to ν.

2.1 Discrete Curvatures

In this paper we are interested only in discrete curva-
tures related to the integral Gaussian curvature, i.e.
those that are supported on the vertices. The common

expression for the integral Gaussian curvature of a do-
main U of a smooth surface S is

∫
U
KdA [Kuhn02].

Curvature ω around vertex ν is defined as:

ω = 2π − θ (1)

where θ =
∑
αi is the total angle around vertex ν,

and αi are those angles of the faces in the Str(ν) that
are incident to ν. Sometimes one refers to ω simply as
the Gaussian curvature around the vertex, or discrete
Gaussian curvature. Obviously, expression 1 is valid
for any point x ∈ P . For a domain U ⊆ P the total
curvature ΩU is determined as ΩU =

∑
ν∈U ων . For

an oriented closed polyhedral surface P of genus g ΩU

is equal to (1 − g)4π, so the discrete analogue of the
Gauss-Bonnet theorem is preserved.
Positive (extrinsic) curvature ω+: The following
measure which we determine is an analogue of the to-
tal absolute curvature of a polyhedral domain. How-
ever, in Figure 1 we can see that in both polyhedra
all curvatures ων are positive and actually are equal
for every corresponding vertex.
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Figure 1: Two polyhedra

Therefore, we have:

Ω(P1) = Ω(P2) =
∑
ν∈P1

|ων | =
∑
ν∈P2

|ων | = 4π. (2)

The left polyhedron is non-convex, but the above
equation does not reflect this fact. For a closed non-
convex smooth surface S the total absolute curva-
ture Kabs =

∫
S
|K|dA is greater than 4π; therefore,∑

ν∈P |ων | is not an appropriate analogue of Kabs.
The problem is that the curvature ω around a vertex
may consist of positive and negative ‘parts’ that are
‘glued’ together; and the task is to separate them. If
vertex ν belongs to the boundary of the convex hull
of its star (i.e. the convex hull of ν and all vertices in
its star), then we can single out another star Str+(ν)
with ν as the vertex and those edges of Str(ν) that
belong to the boundary of the convex hull. The edges
of Str+(ν) will determine the faces of Str+(ν). We
refer to Str+(ν) as the convex cone of vertex ν. Then

ω+ = 2π − θ+ (3)

where θ+ is the total angle around ν in Str+(ν). ω+

is equal to zero, if the vertex and all the vertices in its
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star lie in the same plane. If the convex cone around
ν doesn’t exist, i.e. ν lies inside the convex hull of
Str(ν), then ω+ is, by definition, equal to zero.
Negative (extrinsic) curvature ω−: We can now
’extract’ the negative part of ω as follows

ω− = ω+ − ω (4)

Absolute (extrinsic) curvature ωabs:

ωabs = ω+ + ω− (5)

On the basis of the types of curvatures around a
vertex one distinguishes three basic types of vertices
for an embedded polyhedral surface ([Br79, Alb96]):
convex vertices (ω+ = ω), saddle vertices (ω− = −ω)
and mixed vertices (ω+ > 0, ω+ %= ω) (see Figure 2).

(i) (ii) (iii)

Figure 2: Examples of convex (i), saddle (ii), and
mixed (iii) vertices

A mixed vertex, however, possesses always the convex
cone around its star. A mixed vertex and its corre-
spondent convex cone are shown in Figure 3.

(i) (ii)

Figure 3: Mixed vertex (i) and its convex cone (ii)

Total absolute extrinsic curvature Ωabs: is de-
fined as the sum of absolute extrinsic curvatures of
all the vertices of a polyhedral surface P :

Ωabs =
∑

i

ωabs(νi) =
∑[

ω+(νi) + ω−(νi)
]

(6)

Ωabs takes different values on the polyhedra that are
depicted in Figure 1. It is equal to 4π on the right
polyhedron, as it represents a convex body, and is
greater than 4π on the left polyhedron.

2.2 Gauss map

Separation of the positive and negative parts of the
curvature for a mixed vertex can also be carried out
using the Gauss map. For a domain U of smooth
surface S the Gauss map N(U) may be thought of as

the map assigning to each point p ∈ U the point on
the unit 2-sphere S2 ∈ R3, by ‘translating’ the unit
normal vector N(p) to the origin [Kuhn02]. The end-
points of normals, therefore, will cover a certain region
on S2. If a neigbourhood U(p) is small such that the
mapN(U(p)) is one-to-one and orientation-preserving
(outward normals at corresponding points on S and
S2 correspond), then the area N(U(p)) is considered
positive, and the corresponding region U(p) is said to
be strictly convex and the Gaussian curvature at p
defined as |K(p)| = limU(p)↓p

AreaN(U(p))
AreaU(p) , is positive,

i.e. K(p) > 0. If the map N(U(p)) is one-to-one
but orientation reversing, then the area N(U(p)) is
considered to be negative, p is a saddle point and
K(p) < 0. Of course, different regions of S can be
mapped to the same region on the unit sphere, which
results in multiplicities of the Gauss map.
To compute directly the image of the Gauss map of a
given vertex, we need to construct the outward vec-
tor normal for each of the facets around a vertex and
then draw geodesics arcs between the images of neigh-
bouring faces to obtain a graphic image. The union
of the Gauss maps for all vertices is the Gauss map
of a polyhedral surface.
An orientation of the contour around the vertex on
a polyhedral surface induces the orientation on the
boundary of the spherical polygon. Thus we can eval-
uate the curvature around the vertex by computing
the area of the spherical image with the sign + (plus)
in the case that the orientation is preserved, and with
the sign − (minus) otherwise.

3 Results

To characterise a polyhedral model we have developed
algorithms that have the following functionalities:

1. Determination of the Gauss Map for each of the
vertices in V; and

2. Curvature Visualisation, which displays a graph-
ical representation of the Gauss map.

We are able to divide the Gauss Map for a vertex into
different spherical polygons, determine the orienta-
tion of each polygon and thus its sign. Therefore, we
are able not only to separate ω(v) for a vertex v into
positive and negative parts ω+(v) and ω−(v), but to
separate into subparts of the same sign. The number
of subparts together with their signs represents the
Gauss map signature of a vertex. Each subpart of the
negative sign represents a potential (hidden) saddle
region.
The main advantage of our method is that it al-
lows the determination of incorporated curvatures of
various types of vertices, including all the above-
mentioned ones and much more complex such as
the monkey saddle, or vertices with self-intersections,
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Figure 4: Pinch vertex and a reverse pinch vertex with
corresponding Gauss maps

which don’t fit exactly in the category ‘mixed’, de-
scribed in the previous section. Eventually, we can
determine the curvatures of a vertex of any type (of
an oriented polyhedral surface P ). It is also possible
to display the Gauss Map for all the vertices of the ob-
ject simultaneously, or select only one of the vertices
for its Gauss Map to be shown exclusively (or, corre-
spondingly, to visualise the Gauss map of a region on
the surface). The method is interactive, and we can
visualise the regions of positive curvature separately
from the regions of negative curvature.

Examples of Gauss map visualisations are given be-
low. The display of the Gauss Map is done in two
different views, or scenes, and is implemented using
OpenGl. The left scene shows the model of the orig-
inal object and, in the right scene, the areas for the
Gauss Map are drawn on top of a sphere. Positive
areas are shown in red, while negative areas are dis-
played in blue (lighter and darker grey in the black-
white print). The corresponding areas on the object
are coloured in green and red respectively (dark and
light grey in the black-white print).

Figure 4 shows the Gauss map visualisation of two
complex vertices with self-intersections, which we call
a pinch vertex and a reverse pinch vertex. In order to
understand the difference between a pinch vertex and
a reverse pinch vertex, imagine a walk along the link
of the star of a vertex ν. In the case of the pinch ver-
tex the walk makes two full turns around the vertex,
both turns have the same orientation (for example,
counter clockwise). In the case of the reverse pinch
point, the walk makes also two full turns, one is, for
example, in the counter clockwise direction, and the
second one - in the ‘reverse’ direction (i.e. clockwise).
The Gauss map of the pinch vertex has two overlap-
ping areas, each of positive sign. One area is equal to
the curvature of the convex star of the pinch vertex.
The Gauss map of the reverse pinch vertex has also
two areas of positive curvature, separated by the area
of negative curvature.

A more complex object and its Gauss map visualisa-
tion are presented in Figure 5.

Figure 5: Torso and its Gauss map visualisations

4 Future work

Current on-going research includes the visualisation of
the processes of mesh simplification and optimisation
by using the GMS method, as well as to use it for
developing subdivisions schemes based on curvature
estimations.
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