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1 Introduction

Reference points have been introduced in [2] and [1]
to construct approximation algorithms for matching
compact subsets of Rd under a given class of transfor-
mations. Also a general discussion of reference point
methods for matching according to the Hausdorff-
distance has been given in [1]. Another distance mea-
sure used for shape matching is the Earth Mover’s
Distance (EMD) for weighted point sets ([7]). Here
we will extend the definition of reference points to
weighted point sets and get fast constant factor ap-
proximation algorithms for matching weighted point
sets under translations, rigid motions and similar-
ity operations with respect to the Earth Mover’s
Distance. A first iterative algorithm to solve this
problem has been given by Cohen ([3]). Thus we
want to find algorithms where EMDapx(A,B) ≤
εEMDopt(A,B). Under this assumption ε is called
the loss factor of the approximation algorithm. Unless
stated otherwise, the results given in this paper are
independent of the distance measure on the ground
set, therefore the results are widely applicable. Addi-
tionally, all theorems hold in arbitrary dimension d.
For a full version of this extended abstract see [5].

2 Basic Definitions

In this chapter we provide all definitions required.

Definition 1 (Weighted Point Set) ([4]) Let A =
{a1, a2, ..., an} be a weighted point set such that ai =
(pi, αi) for i = 1, ..., n, where pi is a point in Rd and
αi ∈ R+ ∪ {0} its corresponding weight. Let WA =∑n

i=1 αi be the total weight of A. Let Wd be the
set of all weighted point sets in Rd and Wd,G be the
set of all weighted point sets in Rd with total weight
G ∈ R+.

In the following we will use transformations on
weighted point sets. By this we mean to transform
the point set and leave the weights unchanged.
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A point related to each weighted point set is the
center of mass. This point will play an important role
in our approximation algorithms. Note that this point
can be computed in linear time and therefore does not
affect the runtime of the presented algorithms.

Definition 2 (Center of Mass) The center of
mass of a weighted point set A = {(pi, αi)i=1,...,n} ∈
Wd is defined as

C(A) =
1
WA

n∑
i=1

αipi.

Definition 3 (Reference Point) ([1]) Let K be a
subset of Wd and δ : K → R be a distance measure
on K. A mapping r : K → Rd is called a δ-reference
point for K with respect to a set of transformations
T on K, if the following two conditions hold:

1. Equivariance with respect to T : For all A ∈ K
and T ∈ T we have

r(T (A)) = T (r(A)).

2. Lipschitz-continuity: There is a constant c ≥ 0,
such that for all A,B ∈ K,

||r(A)− r(B)|| ≤ c · δ(A,B).

We call c the quality of the reference point r.

Later, when we want to construct an approximation
algorithm for similarities, we will have to rescale at
least one of the weighted point sets. Unfortunately,
rescaling in a way that the diameters of the underlying
point sets are equal, does not work. Please note again
that we will keep the weights of the points unchanged.
The key for a working algorithm is to rescale in a

way that the normalized first moments with respect to
their reference points coincide. Here we give the def-
inition of the normalized first moment of a weighted
point set with respect to an arbitrary point p ∈ Rd.
Note that this point can be computed in linear time.

Definition 4 (Normalized First Moment) The
normalized first moment of a weighted point set
A = {(pi, αi)i=1,...,n} ∈ Wd with respect to a point
p ∈ Rd is defined as

mp(A) =
1
WA

n∑
i=1

αi||pi − p||.
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Next we will introduce the Earth Mover’s Distance
(EMD,[7]), a commonly known distance measure on
weighted point sets.

Definition 5 (Earth Mover’s Distance) Let A =
{(pi, αi)i=1,...,n}, B = {(qi, βi)i=1,...,m} ∈ Wd be
weighted point sets with total weights WA, WB . Let
D : Rd×Rd → R be a distance measure on the ground
set Rd. The Earth Mover’s Distance between A and
B is defined as

EMD(A,B) =
minF∈F

∑n
i=1

∑m
j=1 fijD(pi, qj)

min{WA,WB}

where F = {fij} is a feasible flow, i.e.

1. fij ≥ 0, i = 1, ..., n, j = 1, ...,m
2.

∑m
j=1 fij ≤ αi, i = 1, ..., n

3.
∑n

i=1 fij ≤ βj , j = 1, ...,m
4.

∑n
i=1

∑m
j=1 fij = min{WA,WB}

For a detailed discussion of the EMD see [7], [3] and
[4]. In the following, the distance measure D used in
the definition of the EMD should be the same as the
one used in the defintion of the reference point. If D
is the Euclidean Distance, we will also use EEMD as
a notation for the Earth Mover’s Distance.

3 Approximation Algorithms Using Reference
Points

In this chapter we present approximation algorithms
using reference points. Since this would be useless if
there was no reference point, we provide the following
theorem:

Theorem 1 The center of mass is an EMD-reference
point for weighted point sets with equal total weights
with respect to affine transformations. Its quality is 1.

The proof of the Lipschitz-continuity was already
given in [7] as a proof for a lower bound for the EMD.
The equivariance of the center of mass is commonly
known.
The following three sections are organized as fol-

lows: In each section we consider a class of trans-
formations, construct an approximation algorithm for
matching under these transformations for general ref-
erence points and finally use the center of mass to get
a concrete algorithm.
For the whole chapter let A = {(pi, αi)i=1,...,n},

B = {(qi, βi)i=1,...,m} ∈ Wd,G be two weighted point
sets in dimension d with positive equal total weight
G ∈ R+. Please note that the following results do
not hold for weighted point sets with unequal to-
tal weights. For simplicity let m be O(n). Fur-
ther let r : Wd,G → Rd be an EMD-reference point
for weighted point sets with respect to the consid-
ered class of transformations with quality c. Let

T ref (n) be the time to compute the reference point,
TEMD(n) and TEEMD(n) be the time to compute
the EMD and EEMD between two weighted point
sets and T rot(n) be the time needed to find the opti-
mal rotation around a fixed point. An upper bound
on TEMD(n) and TEEMD(n) is O(n4 log n) using a
strongly polynomial minimum cost flow algorithm by
Orlin ([6]). A in practice faster algorithm can be de-
veloped by solving the linear programming problem
using the simplex method.

3.1 Translations

Consider the following algorithm to get an approx-
imation on the problem of finding a translation
minimizing the EMD under translations:

Algorithm TranslationApx:
1. Compute r(A) and r(B) and move B by r(A)−
r(B). Let B′ be the image of B.

2. Output B′ as an approximately optimal solution
and the approximate distance EMD(A,B′).

Extending the proof in [1] to weighted point sets we
can prove the following:

Theorem 2 Algorithm TranslationApx finds an ap-
proximately optimal matching for translations with
loss factor c+ 1 in time O(T ref (n) + TEMD(n)).

Corollary 3 Algorithm TranslationApx using the
center of mass as EMD-reference point induces an
approximation algorithm with approximation ratio 2.
Its runtime is O(TEMD(n)).

3.2 Rigid Motions

The following algorithm gives a first approximation
on the EMD under rigid motions, i.e. combinations
of translations and rotations:

Algorithm RigidMotionApx:
1. Compute r(A) and r(B) and move B by r(A)−
r(B). Let B′ be the image of B.

2. Find an optimal matching of A and B′ under
rotations of B′ around r(A) = r(B′). Let B′′ be
the image of B′ under this rotation.

3. Output B′′ as an approximately optimal so-
lution together with the approximate distance
EMD(A,B′′).

Theorem 4 Algorithm RigidMotionApx finds an ap-
proximately optimal matching for rigid motions with
loss factor c+1 in O(T ref (n)+TEMD(n)+T rot(n)).

Since the position of the reference point as rota-
tion center is fixed, several degrees of freedom have
been eliminated and the problem is easier than the one
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finding the optimal rigid motion itself. Unfortunately,
even for this problem no efficient algorithm is known
so far. Therefore it would be nice to have at least an
approximation algorithm for this problem. We will
show one based on the following lemma. Please note
that this lemma is only proven if we take the Eu-
clidean distance on the ground set.

Lemma 5 Let p ∈ Rd be some point. Let Rot(p)
be the set of all rotations around p. Then there is a
rotation R′ ∈ Rot(p) such that

EEMD(A,R′(B)) ≤ 2 · min
R∈Rot(p)

EEMD(A,R(B)),

where R′ aligns p and at least one point of each set A
and B.

Therefore, given a fixed point p ∈ Rd we get a
2-approximation on the problem of finding an opti-
mal rotation of B around p by the following algorithm:

Algorithm RotationApx
1. Compute the minimum EEMD over all possible
alignments of p and at least one point of each set
A and B.

The runtime of this algorithm is O(n2TEEMD(n)).
Using this algorithm combined with reference points
we now get an easy to implement and fast approxi-
mation algorithm for rigid motions. Unfortunately,
the increased efficiency must be paid by the increased
approximation ratio (2c+ 2).

Algorithm RigidMotionApxUsingRotationApx
1. Compute r(A) and r(B) and move B by r(A)−
r(B). Let B′ be the image of B.

2. Find a best matching of A and B′ under rotations
of B′ around r(A) = r(B′) where r(A) and at
least one point in A and B′ are aligned. Let B′′

be the image of B′ under this rotation.
3. Output B′′ as an approximately optimal so-
lution together with the approximate distance
EEMD(A,B′′).

Theorem 6 RigidMotionApxUsingRotationApx
finds an approximately optimal matching for
rigid motions with loss factor 2c + 2 in time
O(T ref (n) + n2TEEMD(n)). This holds for the
Euclidean distance on the ground set.

In the next two corollaries we apply the center of
mass to the last two theorems:

Corollary 7 RigidMotionApx using the center of
mass as EMD-reference point induces an approxima-
tion algorithm with approximation ratio 2 in time
O(T rot(n) + TEMD(n)).

Corollary 8 RigidMotionApxUsingRotationApx us-
ing the center of mass as EMD-reference point induces
an approximation algorithm with approximation ra-
tio 4. Its runtime is O(n2TEEMD(n)). This holds for
the Euclidean distance on the ground set.

3.3 Similarities

In this section we present approximation algorithms
for matching two given weighted point sets under
similarity transformations, i.e. combinations of
translations, rotations and scalings. More precisely,
we want to compute minS EMD(A,S(B)), where the
minimum is taken over all similarity operations S.
Note that exchanging A and B makes a difference.

Algorithm SimilarityApx:
1. Compute r(A) and r(B) and move B by r(A)−
r(B). Let B′ be the image of B.

2. Determine the normalized first moments
mr(A)(A) and mr(B′)(B′) and scale B′ by
mr(A)(A)

mr(B′)(B
′) around the center r(A) = r(B′). Let

B′′ be the image of B′ under this scaling.
3. Find an optimal matching of A and B′′ under
rotations of B′′ around r(A) = r(B′′). Let B′′′

be the image of B′′ under this rotation.
4. Output B′′′ as an approximately optimal so-
lution together with the approximate distance
EMD(A,B′′′).

To show the correctness of this algorithm we use
the following two lemmata:

Lemma 9 Let A ∈Wd be a weighted point set with
normalized first moment mp(A) with respect to a
point p ∈ Rd. Let τ1, τ2 be scalings with center p
and ratios γ1 and γ2, respectively. Then

EMD(τ1(A), τ2(A)) ≤ |(γ1 − γ2)mp(A)|.

The next lemma gives a new lower bound for the
EMD of two weighted point sets:

Lemma 10 Let A,B ∈ Wd,G and r : Wd,G → Rd a
reference point with quality c. Then

|mr(A)(A)−mr(B)(B)| ≤ (1 + c)EMD(A,B).

Using these lemmata we can prove the following:

Theorem 11 SimilarityApx finds an approximately
optimal matching for similarities with loss factor 2c+2
in time O(T ref (n) + TEMD(n) + T rot(n)).

As for RigidMotionApx, SimilarityApx depends on
finding the optimal rotation, which is impractical.
Again, we make this algorithm practical and efficient
by using RotationApx and again we have to pay by a
worse approximation ratio:
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Algorithm SimilarityApxUsingRotationApx
1. Compute r(A) and r(B) and move B by r(A)−
r(B). Let B′ be the image of B.

2. Determine the normalized first moments
mr(A)(A) and mr(B′)(B′) and scale B′ by
mr(A)(A)

mr(B′)(B
′) around the center r(A) = r(B′). Let

B′′ be the image of B′ under this scaling.
3. Find a best matching of A and B′′ under rota-
tions of B′′ around r(A) = r(B′′) where r(A)
and at least one point in each set A and B′′ are
aligned. Let B′′′ be the image of B′′ under this
rotation.

4. Output B′′′ as an approximately optimal solution
and the approximate distance EEMD(A,B′′′).

Theorem 12 Algorithm SimilarityApxUsingRota-
tionApx finds an approximately optimal matching
for similarities with loss factor 4c + 4 in time
O(T ref (n) + n2TEEMD(n)). This holds for the
Euclidean distance on the ground set.

Corollary 13 Algorithm SimilarityApx using the
center of mass as EMD-reference point induces an
approximation algorithm with approximation ratio 4.
Its runtime is O(TEMD(n) + T rot(n)).

Corollary 14 Algorithm SimilarityApxUsingRota-
tionApx using the center of mass as EMD-reference
point induces an approximation algorithm with loss
factor 8. Its runtime is O(n2TEEMD(n)). This holds
for the Euclidean distance on the ground set.

3.4 Lower Bound for Algorithm TranslationApx

In Section 3.1 we presented the center of mass as an
EMD-reference point with quality 1, and thus induc-
ing an approximation algorithm for translations with
ratio 2. We now show that this bound is tight:

Theorem 15 There are sets where the upper bound
for algorithm TranslationApx is assumed.

Proof. Let A := {((0, 0), 1), ((1, 0),K)} and B :=
{((0, 0), 1), ((0, 1),K)}, where K ∈ R+ is some con-
stant. Let EMDC(A,B) be the Earth Mover’s
Distance, where the center of masses coincide and
EMDopt(A,B) be the optimal distance under trans-
lation. Then EMDC(A,B)

EMDOPT (A,B)
→ 2 as K → ∞. This

can be seen easily by using an upper bound for
EMDopt(A,B) by matching the two thick points.

�

4 Conclusion

In this paper we introduced EMD-reference points for
weighted point sets and constructed efficient approxi-
mation algorithms for matching under various classes
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Figure 1: Matching according to center of mass

of transformations. Additionally, we presented the
center of mass as an EMD-reference point for weighted
point sets with equal total weights. Unfortunately,
the center of mass is no EMD-reference point if you
consider the set of all weighted point sets, including
those with different total weights. Even worse, we
show in [5] that there is no EMD-reference point for
all weighted point sets. A variation of the EMD is
the Proportional Transportation Distance (PTD), see
[4]. In [5] we also show, that the center of mass is a
PTD-reference point even for weighted point sets with
different total weight and all theorems and corollaries
mentioned in this paper carry over. But the PTD has
a couple of disadvantages against the EMD, for exam-
ple it is not suitable for partial matching applications.
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