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Matching Surfaces with Characteristic Points
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Abstract

We study approximation algorithms for a matching
problem that is motivated by medical applications.
Given a small set of points P ⊂ R3 and a surface S,
the optimal matching of P with S is represented by a
rigid transformation which maps P as ‘close as possi-
ble’ to S. Previous solutions either require polynomial
runtime of high degree [2] or they make use of heuris-
tic techniques which could be trapped in some local
minimum. We propose a modification of the problem
setting by introducing subsets of characteristic points
Pc ⊆ P and Sc ⊆ S, and assuming that points from
Pc must be matched with points from Sc. We will
show that especially in the case |Pc| ≥ 2 this restric-
tion results in new fast and reliable algorithms for the
matching problem.

1 Introduction

Today an increasing number of surgeries is supported
by medical navigation systems. The basic task of such
a system is to transform real world data (positions in
the operating field) into a 3-dimensional model (CT
or MR) and to display the transformed position in the
model. Real world data are gaged by optical, electro-
magnetic or mechanical tracking systems. A common
technique for computing the transformation is based
on markers which are fixed on bones. The markers
have to be fixed already during the model acquisition.
Their positions in the model are computed using ap-
propriate image processing methods. Later, at the
beginning of the surgery, at least three markers must
be gaged with the tracking system. Since the total
number of markers is small, one could compute the
correct matching transformation even by brute force
techniques. A more advanced approach making use
of geometric hashing techniques is presented in [3].
There is strong need to develop algorithmic methods
for computing a transformation without using mark-
ers. The main reason for that is an anatomical one: in
many cases (e.g. spinal surgery) it would be very hard
or even impossible to fix markers before the surgery.
One solution is to gage a few points on the surface of
a bone and to compute the corresponding points in
the model. This point registration is a hard algorith-
mic problem, which cannot be solved by the following
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standard approaches:
1) The gaged points could be anywhere on the model
surface and hence, a combinatorial search does not
work.
2) The number of gaged points is too small to ap-
ply surface reconstruction and surface matching algo-
rithms.
Moreover, the registration is part of the surgery and
thus real time algorithms are required. In contrast to
that, it is possible to spend more time for preprocess-
ing the model. Here, we try to retrieve some ideas of
the landmark approach to that new setting. The role
of markers could be played by so-called characteristic
points. Such points can be determined by the sur-
geon, based only on their anatomic properties, e.g.,
the root of the nose or of the thorn of a vertebra. If a
set of characteristic points is known in the model and
the surgeon can track at least three of them, the old
landmark registration algorithms can be applied. Our
main goal is to solve the registration problem if only
two characteristic points can be tracked. To compute
the transformation in that case, one must track some
more (non-characteristic) points on the surface.
In this paper we present our approach for solving

this problem and sketch some first results. In the next
section we introduce some notations and give a formal
definition of the problem. In section 3 we present the
basic algorithm and show how to use this method for
the approximation of the optimal matching.

2 Problem description

We consider two point sets P and S in R3. Usually we
assume that S is the (infinite) set of points on a trian-
gulated surface. The corresponding triangulation will
be denoted by S. However, this assumption is not
crucial. If S is a finite, dense sample of points on a
surface, the algorithms presented in the next sections,
can be applied with small changes.
Our main goal is to register P into a model S. The

quality of the registration will be evaluated by the
directed Hausdorff distance. The distance between a
point a and a compact point set B in d-dimensional
space Rd is defined as

dist(a,B) = min
b∈B
||a− b||
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where || · || is the Euclidean norm in Rd. For two
compact sets A,B in the one-sided Hausdorff distance
from A to B is defined as
−→
H (A,B) = max

a∈A
dist(a,B) = max

a∈A
min
b∈B
||a− b||.

The size of a problem instance (P, S) depends on two
parameters: k, the number of points in P, and n, the
number of triangles in S. We remark that in our ap-
plications k << n can be assumed. Moreover, we as-
sume that two subsets of characteristic points Sc ⊆ S
and Pc ⊆ P are given. In order to prepare a precise
analysis of our algorithms we introduce additional pa-
rameters kc = |Pc| and nc = |Sc|. Both parameters
should be seen as some reasonable constants. The
special role of characteristic points is expressed by
the additional requirement, that each p ∈ Pc must
be mapped onto (or close to) a characteristic point
q ∈ Sc.
To proceed to algorithmic solutions we have to clas-

sify several types of matchings.

Definition 1 Given two parameters µ, η ≥ 0 a rigid
transformation t : R3 → R3 is called (µ, η)-matching
if the following two conditions hold:

1. µ(t) :=
−→
H (t(P \ Pc), S) ≤ µ, and

2. η(t) :=
−→
H (t(Pc), Sc) ≤ η.

If ε is an upper bound for µ(t) and η(t) we denote
t as an ε-matching. In line with the notations above,
we have ε(t) = max(µ(t), η(t)). The minimal ε(t) is
denoted by εopt, and a corresponding matching is an
optimal matching. For a given λ > 1, a matching t is
a λ-approximate matching, if ε(t) ≤ λεopt.
Furthermore, we introduce the notion of semiop-

timal matchings. To this end we fix a set S =
{s̄1, s̄2, . . . , s̄kc} of predefined matching positions for
the characteristic points Pc = {p1, p2, . . . , pkc}. Now
we restrict our attention to matchings t with t(pi) = s̄i

for i = 1, . . . , kc. Let us denote this set of matchings
by MS . We assume that Pc and S are congruent,
because otherwiseMS = ∅.
A matching t ∈MS is a (µ(t), η0)-matching, where

η0 =
−→
H (S, Sc) is a common value for all matchings

in MS . A matching t ∈ MS is called semioptimal
matching (with respect to S) if µ(t) is minimal.
A trivial case with |MS | ≤ 6 occurs, if Pc con-

tains three or more non-collinear points. If addition-
ally the side lengths of the triangle spanned by the
three points are pairwise different, there is only one
matching in MS . Thus, we will focus our attention
to matchings with two characteristic points. In a first
step we design an algorithm to compute semiopti-
mal matchings for a given set S. Then, based on
the semioptimal solution, we show how to compute a
λ-approximate matching for any λ > 1.

3 The 2 point case

3.1 Semioptimal matching

Now, let us assume that the matching positions s1, s2

for the two characteristic points p1, p2 are already
given (see figure 1). First, we present an algorithm
which reports (for any µ) all transformations t with
the given matching positions for p1 and p2 and with
µ(t) ≤ µ.

Basic Algorithm (outline)

1. Fix a rigid transformation t0 : R3 → R3 such that
t0(p1) = s1, t0(p2) = s2. For all pi ∈ P\{p1, p2}
let Ci = C(pi) be the circle with the following
properties (see figure 1):

i) the center of Ci is on the line defined by
p1 and p2,

ii) Ci is lying in a hyperplane perpendicular
to p1, p2, and

iii) pi is on Ci.

2. Consider the transformed circle t0(Ci) and let
the point p′i(α) rotate along this circle starting
from t0(pi), i.e., p′i(0) = t0(pi). Compute sets
of intervals Ii = {α | dist(p′i(α), S) ≤ µ}, for
i = 3, . . . , k.

3. Compute I = ∩k
i=3Ii. For each α ∈ I, rα(s, s′) ◦

t0 is a rigid transformation mapping P onto S,
where rα(s, s′) is the rotation around axis s, s′
with angle α.

p ´

ci

s2 1s

P S

s s´x

d

ci´x

d

pi

1p p2

Figure 1: Corresponding points and the rotation of
the point p′i

A straightforward analysis shows that the algo-
rithm runs in O(kn log n) time.
We remark that this time bound can be improved by a
refined analysis under some assumption about the sur-
face representation. The main idea is a subdivision of
the bounding box of the surface S into

√
n×√n×√n

subboxes. The assumptions on the surface represen-
tation imply that each subbox intersects only a con-
stant number of surface triangles. Since each cycle
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intersects at most O(
√
n) subboxes, one can compute

an interval set Ii considering only O(
√
n) triangles (if

µ is not larger than the minimal subbox side length).
We will leave the details of this analysis to a full pa-
per.
The algorithm above can be used as a decision al-

gorithm answering the question whether for a given µ
there is some matching t with t(p1) = s, t(p2) = s′ and
µ(t) ≤ µ for all other points of P . Thus, using binary
search one can approximate a semioptimal matching.
However, it is also possible to compute the precise
value µ of a semioptimal matching by the following
modification of the basic algorithm. Instead of com-
puting the interval sets Ii = {α | dist(p′i(α), S) ≤ µ}
we compute the functions fi(α) := dist(p′i(α), S).
This function is the lower envelope of the distance
functions of a rotating point to the surface triangles.
Thus, the description complexity of fi is O(n log n),
see [5]. Then, instead of computing I = ∩k

i=3Ii, we
compute the upper envelope f of all functions fi. The
minimum of f is the µ-value of a semioptimal match-
ing.

3.2 The approximation problem

There are two groups of standard approaches to this
Problem. The first group consists of simulated an-
nealing [6] and ICP variants [1], [4]. These meth-
ods have proved to be useful in many practical situa-
tions, but, they have the disadvantage that they could
be trapped in a local minimum, and thus it is hard
to prove something about the approximation ratio.
The second group consists of discretization patterns,
inducing the repeated computation of the semiopti-
mal solution for a dense discrete set of transforma-
tions. We will exploit this approach to compute a λ-
approximation of the optimal matching, where λ > 1
is an arbitrary constant.
A common key problem of many approximation prob-
lems focusses on the fact the the value of an opti-
mal solution is unknown. Here we are able to derive
upper and lower bounds for εopt from the results of
some semioptimal matchings. Since each pair (s, s′)
of characteristic points on S could constitute the ap-
proximated destination of (p1, p2) we apply this pro-
cedure for each such pair. More precisely, we com-
pute the semioptimal matching ts,s′ mapping (p1, p2)
onto the point pair (s1, s2), where (s1, s2) forms the
same line and has the same center as (s, s′), but
||s1 − s2|| = ||p1 − p2||. We denote the best value
obtained in this way by δ = mins,s′∈Sc

{ε(ts,s′)}.
Furthermore, we introduce the radius rP and the rel-
ative radius RP of the point set P with respect to the
center of the characteristic points as follows:

rP = max
p∈P
||p1 + p2

2
−p||, RP =

rP
||p1−p2||

2

=
2 rP

||p1 − p2||
.

Proposition 1 δ ≥ εopt ≥ δ
RP+2 .

Given an approximation factor λ > 1 we try to
improve the best value δ obtained so far by small
changes of the predefined matching positions s1, s2.
The bounds above can be used to design a grid based
set of pertubed matching positions which is dense
enough to include a λ-approximation of an optimal
matching.
Let us set two grids around points s and s′ in the

following manner. First, a 2-dimensional squared
grid, centered at the point s′, normal to segment
(s, s′), with size 2

√
3δ and with size of the subsquares

(λ−1)δ
8(RP+1)RP

. Second, a 3 dimensional grid centered at
the point s, parallel to the 2-dimensional grid, with
size 2δ and size of subcubes

√
3(λ−1)δ

6(RP+1) . Using these
grids for fixing a dense set of matching positions
(s1, s2), at least one of the semioptimal matchings
ts1,s2 is a λ-approximation of the optimal matching.
The number of the grid combinations, defin-
ing possible matching positions (s1, s2), is

( 16
√

3RP (RP+1)
λ−1 + 1)

2

(
√

3(RP+1)
λ−1 + 1)

3

. This im-
plies the following estimation of the total run
time:

Lemma 2 The run time complexity of
the λ-approximation presented above is

O(n2
c k n log n

R5
P

(λ−1)5 ).

We remark that the factor n in this formula can be
improved in the same way as discussed in the anal-
ysis of the semioptimal matching. Moreover, in the
applications the ratio RP can be regarded as a small
constant.
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