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Semi-Computability of the Fréchet Distance Between Surfaces

Helmut Alt Maike Buchin ∗

Abstract

The Fréchet distance is a distance measure for pa-
rameterized curves or surfaces. Using a discrete ap-
proximation, we show that for triangulated surfaces it
is upper semi-computable, i.e., there is a non-halting
Turing machine which produces a monotone decreas-
ing sequence of rationals converging to the result. It
follows that the decision problem, whether the Fréchet
distance of two given surfaces lies below some speci-
fied value, is recursively enumerable.

1 Introduction

The Fréchet distance was first introduced by Fréchet
for curves [Fré06] and later for surfaces [Fré24]. The
idea of the Fréchet distance is to take into account
the “flow” of the curve or surface given by its param-
eterization. In some cases, the Fréchet distance is a
more suitable distance measure than the commonly
used Hausdorff distance (see [AG95]).
Formally the Fréchet distance is defined as follows.

Definition 1 Let f, g be parameterizations of k–
dimensional surfaces, i.e., continuous functions

f, g : [0, 1]k → Rd, k ≤ d.

Then their Fréchet distance is

δF (f, g) := inf
σ:[0,1]k→[0,1]k

max
t∈[0,1]k

||f(t)− g(σ(t))||.

where the reparameterization σ ranges over all orien-
tation preserving homeomorphisms.

The norm ||.|| underlying the definition in this paper
can be the L1-, L2-, or L∞-norm as long as it can be
computed or approximated by rational arithmetic.
For dimension k = 1 of the parameter space, in

particular for polygonal curves, δF is known to be
computable in polynomial time [AG95]. For two–
dimensional surfaces, however, the computation of
the Fréchet distance surprisingly seems to be much
harder. In fact, Godau showed [God98] that com-
puting the Fréchet distance between triangulated sur-
faces even in two–dimensional space is NP-hard. It
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remained open, how hard the problem really is, not
even its computability could be shown.
In this paper, we present a partial result concern-

ing the computability. More specifically, we will show
that the Fréchet distance between triangulated sur-
faces is upper semi-computable, i.e., there is a non-
halting Turing machine which produces a monotone
decreasing sequence of rationals converging to the re-
sult. It follows that the decision problem whether the
Fréchet distance of two given surfaces lies below some
specified value is recursively enumerable.
The computationally hard part of computing the

Fréchet distance for dimensions k > 1 seems to be,
that according to the definition, the infimum over all
homeomorphisms of the parameter space has to be
taken. For dimension k = 1 the orientation-preserving
homeomorphisms on [0, 1] are the continuous, onto,
monotone increasing functions on [0, 1]. For higher di-
mensions the homeomorphisms can be much “wilder”.
We tackle this problem by approximating the home-

omorphisms by discrete maps which are easier to
handle. We do this by first approximating arbi-
trary homeomorphisms by piecewise linear homeo-
morphisms which is a known result from topology.
The piecewise linear homeomorphisms are then ap-
proximated by mesh homeomorphisms, i.e., homeo-
morphisms that are compatible with certain subdivi-
sions of the original triangulations of the parameter
spaces. Finally, for mesh homeomorphisms on fine
subdivisions the distance between the surfaces can be
approximated by the distances at only a finite number
of points.
It remains open, whether the Fréchet distance be-

tween triangulated surfaces is a computable function
in the strong sense.

2 Model of computation, main results

We assume that the input to our algorithm are two tri-
angulated surfaces in space Rd, d ≥ 2, which are rep-
resented as piecewise linear parameterizations f, g :
[0, 1]2 → Rd. For simplicity, we will denote the sur-
faces themselves by f and g, as well.
Piecewise linear means that the parameter spaces

of f and g are triangulated and on each triangle f
and g are linear maps in the sense that for a triangle
∆ = 〈u, v, w〉 we have f(λ1u+λ2v+λ3w) = λ1f(u)+
λ2f(v)+λ3f(w) for all λ1, λ2, λ3 with λ1+λ2+λ3 = 1
and g has an analogous property.
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We denote the triangulated parameter spaces of f
and g by K and L. The vertices of the individual tri-
angles have rational coordinates, and the coefficients
describing the linear maps are rational, as well. Thus,
a problem instance has a canonical finite representa-
tion which can be given as input to a Turing machine.
We will show that the Fréchet distance between tri-

angulated surfaces is computable in a weak sense ac-
cording to the following definition which has been con-
sidered in the complexity-of-real-functions community
(see, e.g., [WZ00]).

Definition 2 A function ϕ : N → R is called up-
per (lower) semi-computable if there is a Turing ma-
chine which on input x outputs an infinite, monotone
decreasing (increasing) sequence of rational numbers
converging to ϕ(x).

Now we can formulate our main result:

Theorem 1 The Fréchet distance between two tri-
angulated surfaces in space Rd, d ≥ 2, is upper semi-
computable.

Theorem 1 immediately implies the following corol-
lary, where 〈f, g, a〉 denotes some standard encoding
of a triple consisting of two triangulated surfaces f
and g, and some rational a > 0.

Corollary 2 The set {〈f, g, a〉 | δF (f, g) < a}, i.e.,
the decision problem for the Fréchet distance between
triangulated surfaces, is recursively enumerable.

In fact, consider the Turing machine producing a
monotone decreasing sequence converging to δF (f, g)
which exists by Theorem 1. Stop this Turing machine
as soon as it produces a value less than a. This algo-
rithm will eventually halt for all triples 〈f, g, a〉 in the
language and else will run forever.
The computability of δF in the strong sense of com-

putability theory of real functions (see, e.g., [Wei00])
remains open, since the sequence produced by the al-
gorithm in the proof of Theorem 1 is not shown to
effectively converge to δF (f, g), i.e., we cannot give
any estimate on the rate of convergence.
Our proof can be modified to show a weaker form of

Theorem 1 for more general surfaces. More precisely,
if we just assume that the parameterizations f and g
are computable real functions, it is still correct that
there is an algorithm producing on input f, g (repre-
sented, say, by the Turing machines computing f and
g) an infinite sequence of rational numbers converging
to δF (f, g). However, this sequence is not necessar-
ily monotone decreasing, and the corollary cannot be
deduced anymore.

3 Approximating the homeomorphisms

In this section, we approximate homeomorphisms ar-
bitrarily closely by mesh homeomorphisms.
Let us first recall some standard definitions and no-

tations from topology. For a simplicial complex K,
a triangulation in our case, let Km denote its mth

barycentric subdivision, where in one subdivision step
the barycenters of the previous simplices are taken
as vertices. Mesh(K) denotes the maximal diameter
of simplices in K, again triangles in our case. The
underlying space of K, denoted by |K|, is the set of
all points lying in simplices of K. In our case |K| is
always the unit square [0, 1]2.
We now define mesh homeomorphisms.

Definition 3 Given two triangulations K and L, a
piecewise linear homeomorphism h : |Km| → |Ln| is
called a mesh homeomorphism if it maps the edges of
Km to edge chains of Ln, i.e., polygonal chains made
up of edges of Ln.

For approximating homeomorphisms arbitrarily
closely by mesh homeomorphisms, we need only a
weak form of closeness which is defined as follows.

Definition 4 Given two homeomorphisms
h, h′ : |K| → |L| on triangulations K and L, let

dK(h, h′) := max
∆∈K

δH(h(∆), h′(∆))

where ∆ ∈ K ranges over all triangles in K and δH
denotes the Hausdorff distance.

Now we can approximate homeomorphisms by
mesh homeomorphisms.

Lemma 3 Let K and L be triangulations, σ : |K| →
|L| a homeomorphism, m ∈ N, and ε > 0. Then there
exist n ∈ N and a mesh homeomorphism h : |Km| →
|Ln| such that dKm(σ, h) < ε.

Proof. We omit the details of this proof in this ex-
tended abstract but sketch the main idea.
By a theorem from topology (see, e.g., chapter 6

in [Moi77]), a homeomorphism can be approximated
arbitrarily closely by a piecewise linear homeomor-
phism. We use this as a first step, because piece-
wise linear homeomorphisms are easier to handle than
arbitrary homeomorphisms. For a piecewise linear
homeomorphism, we see that it can be approximated
arbitrarily closely (in the sense of Definition 4) by
a mesh homeomorphism. Together this proves the
lemma.
The idea of approximating piecewise linear home-

omorphisms by mesh homeomorphisms, is to subdi-
vide sufficiently using, e.g., barycentric subdivision.
Because of growing degrees of vertices and grow-
ing fineness of the triangulations, we can find mesh
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homeomorphisms arbitrarily close to a piecewise lin-
ear homeomorphism. A simple example is shown in
Figure 1.
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Figure 1: Approximating a piecewise linear homeo-
morphism by a mesh homeomorphism.

�

4 Discrete Fréchet distance

In this section we define a discrete Fréchet distance
for surfaces and show that it is equal in value to the
Fréchet distance.
We define the discrete Fréchet distance of two sur-

faces by taking the infimum over all mesh homeomor-
phisms and for each mesh homeomorphism taking the
maximum over distances at vertices.
More formally, we define

Definition 5 Let f, g be parametrized, triangulated
two–dimensional surfaces in Rd, d ≥ 2, with underly-
ing triangulations K,L respectively, of the parameter
space, i.e.,

f : |K| → Rd, g : |L| → Rd

are piecewise linear maps. Then their discrete Fréchet
distance is defined as

δdF (f, g) := inf
m,n

h:|Km|→|Ln|

max
∆∈Km

T

max
v∈V∆

w∈Mn
h(∆)

||f(v)−g(w)||

where h ranges over all orientation preserving mesh
homeomorphisms, Km

T is the set of triangles in Km,
V∆ are the vertices of ∆, and Mn

h(∆) is the set of

vertices of Ln that lie in h(∆).

First we show that this definition yields a discrete
Fréchet distance not smaller than the Fréchet dis-
tance.

Lemma 4 δF ≤ δdF

Proof. Any mesh homeomorphism is, in particular,
a homeomorphism. Therefore, it suffices to show
that for a mesh homeomorphism h : |Km| → |Ln| we
can bound the pointwise maximum by the maximum
taken at vertices, i.e.,

max
t∈[0,1]2

||f(t)−g(h(t))|| ≤ max
∆∈Km

T

max
v∈V∆

w∈Mn
h(∆)

||f(v)−g(w)||.

(1)

To see this, let t ∈ [0, 1]2 be arbitrary. Then t
lies in a triangle ∆ of Km and h(t) lies in a triangle
∆′ of h(∆) ⊂ Ln. Since f and g are piecewise lin-
ear and Km and Ln are refinements of the underly-
ing triangulations of the parameter spaces, f(∆) and
g(∆′) are triangles, as well. Since the maximum dis-
tance between points of two triangles is attained be-
tween two corners, we have that ||f(t)− g(h(t))|| ≤
||f(v) − g(w)|| for some v ∈ ∆, w ∈ ∆′. Taking the
maximum on both sides yields equation (1). �

Now we show that also the discrete Fréchet distance
is not larger than the Fréchet distance.

Lemma 5 For all ε > 0, δdF ≤ δF + ε.

Proof. The idea is that for any homeomorphism
there is a mesh homeomorphism arbitrarily close and
for the mesh homeomorphism the distance computa-
tion at vertices comes arbitrarily close to the distance
computation on all parameter values by sufficient sub-
division of the domain complex.
Let σ be a homeomorphism close to realizing δF ,

i.e., max
t∈[0,1]2

||f(t) − g(σ(t))|| ≤ δF + ε1 for a small

ε1 > 0.
By Lemma 1, for any ε2 > 0 and any m ∈ N there

is a mesh homeomorphism h : |Km| → |Ln| such that
dKm(σ, h) ≤ ε2 .
Let ∆ be some triangle in |Km| and v one of its

vertices. Since dKm(σ, h) ≤ ε2, for any w ∈ h(∆) ⊂
Ln there is an x ∈ σ(∆) with ||w − x|| < ε2. Using
t = σ−1(x) and the Lipschitz-continuity of g we get
||g(w) − g(σ(t))|| < cg · ε2 for some t ∈ ∆ where cg
denotes the Lipschitz constant of g.
Since t and v lie in the same triangle ∆ ∈ Km,

we have ||v − t|| ≤ mesh(Km) and ||f(v) − f(t)|| ≤
cf ·mesh(Km) with cf the Lipschitz constant of f .
Putting everything together and using the triangle

inequality repeatedly we get

δdF ≤ max
∆∈Km

T

max
v∈V∆

w∈Mn
h(∆)

||f(v)− g(w)||

≤ max
∆∈Km

T

max
v∈V∆

x∈σ(∆)

||f(v)− g(x)||+ cg · ε2

≤ max
∆∈Km

T

max
t∈∆

||f(t)− g(σ(t))||+ cg · ε2

+cf ·mesh(Km)
≤ δF + ε1 + cg · ε2 + cf ·mesh(Km).

Since ε1, ε2, and mesh(Km) can be made arbitrarily
small, this concludes the proof. �

Lemmas 2 and 3 yield the following corollary.

Corollary 6 δF = δdF
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5 Semi-Computability of the Fréchet distance

We can now give an algorithm showing the upper
semi-computability of the Fréchet distance between
triangulated surfaces as claimed in Theorem 1. This
algorithm will, on input f, g, run forever and produce
a monotone decreasing sequence of rational numbers
converging to δF (f, g).

Algorithm CompFrec(f,g)

Input: Triangulated surfaces f, g, including triangu-
lations K,L of the parameter spaces, in a finite de-
scription as explained in Section 2.

1 D := ∞;

2 for all (m,n) ∈ N× N do

2.1 generate the barycentric subdivisionsKm of
K and Ln of L, let E = {e1, ..., ek} be the
set of edges in Km;

2.2 for all k-tuples (π1, ..., πk) of simple polygo-
nal chains in Ln do

2.2.1 assign the polygonal chain πi to the
edge ei for i = 1, ..., k and check
whether this assignment results in an
orientation preserving homeomorphic
image of Km, i.e., whether

2.2.1.1 the edges on the boundary of |K|
are mapped onto the boundary of
|L| preserving the orientation; and

2.2.1.2 if a set of edges inKm share an end-
point, the corresponding chains do,
as well; and

2.2.1.3 other than that, there are no inter-
section points between two chains;

2.3 If the test in step 2.2.1 is passed, the chains
form a subdivision of |L| such that each tri-
angle ∆ of Km has a corresponding area
H∆ ⊂ |L|.
2.3.1 for each triangle ∆ of Km do
2.3.1.1 for all vertices v of ∆ and all ver-

tices w of Ln lying in H∆ do com-
pute ||f(v)− g(w)||;

2.3.2 M := the maximum of all the values
found in step 2.3.1.1;

2.3.3 D := min(D,M); output D;

In essence, algorithm CompFrec approximates the
discrete Fréchet distance which is, by Section 4 the
same as the Fréchet distance. Line 2 can be realized
by some standard enumeration method for pairs of
integers.
Observe, that the number of k-tuples of polygonal

chains of Ln checked in step 2.2 is finite. In fact, it

is bounded by (l!)k where l is the number of edges
in Ln, which itself is exponential in n, whereas k is
exponential in m. But efficiency is not the issue here.
In step 2.3.1.1 we assume that the norm ||.|| under-

lying the Fréchet distance can be evaluated by ratio-
nal operations. This is correct for, e.g., the L1- or
L∞-norm but not directly for L2. In that case, one
should rather operate with the square of the distance
in line 2.3.1.1 and output some suitable rational ap-
proximation of

√
D (which is possible) in line 2.3.3.

Note that checking that the boundary of |K| is
mapped orientation preserving onto the boundary of
|L| in step 2.2.1.1, entails that the mesh homeomor-
phism is orientation preserving also on the interior.
For each pair (m,n) ∈ N × N all mesh homeomor-

phisms h : Km → Ln are evaluated, i.e.,

δh,m,n = max
∆∈Km

T

max
v∈V∆

w∈Mn
h(∆)

||f(v)− g(w)||

(see Definition 5) is computed1.
To see that the algorithm produces values arbitrar-

ily close to δdF (f, g), observe that any neighborhood
of δdF (f, g) must, by Definition 5, contain some value
of the form δh,m,n. The algorithm will eventually en-
counter that pair (m,n) and the subdivision corre-
sponding to h and output δh,m,n.
By line 2.3.3 the output sequence is monotone de-

creasing. Since for all triples (h,m, n) by Definition 5,
δh,m,n ≥ δdF (f, g), line 2.3.3 is justified.
Since by Corollary 6 δF = δdF , algorithm CompFrec

arbitrarily closely approximates δF (f, g) which proves
Theorem 1.
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