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On Computing Fréchet Distance of Two Paths on a Convex Polyhedron ∗
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Abstract

We present a polynomial time algorithm for comput-
ing Fréchet distance between two simple paths on the
surface of a convex polyhedron.

1 Introduction

Distance measures used to match geometric patterns
include: Hausdorff-distance, Fréchet-distance, uni-
form distance, etc. Alt and Godau [1, 2] proposed that
Fréchet distance is one of the most fundamental mea-
sures to compute the similarity between two polyg-
onal curves. Fréchet distance is often referred to as
the dog-leash distance [1]. The unique property is its
sensitivity to the order along the two curves. Fréchet
distance is the minimum leash distance that can keep
the person and the dog walking on their own tracks
from the beginning to the end (without retracting).
Some issues on similarity related to Fréchet distance
have been considered, for example, find a curve that
is similar to a given curve [3, 4], and the application
of Fréchet distance on protein backbone matching.
This paper focuses on the following problem: Given

a convex polyhedron P consisting of n triangular
faces, and two simple paths Z and Z ′ on the surface
of P , how can we use Fréchet distance to measure the
similarity of Z and Z ′? For the sake of simplicity,
assume that each segment in these paths is an edge
of P , and Z consists of z segments and Z ′ consists
of z′ segments. Referring to the dog-leash distance,
the person is walking on the path Z and the dog is
walking on the path Z ′. The leash defines a geodesic
path on the surface of P . Here, Fréchet distance is
measured using Euclidean shortest path distance on
the surface of P .
In this paper, we present a polynomial time algo-

rithm to compute Fréchet distance between the paths
Z and Z ′ on the surface of a convex polyhedron P .
To accomplish this we make use of two data struc-
tures: (i) a data structure of the visibility diagram
that encodes shortest path information for any pair
of points on a pair of edges (es, et), where es ∈ Z and
et ∈ Z ′ and (ii) the data structure of the free space di-
agram proposed in [1] for paths in plane. The novelty
is in adapting the free space diagram with the aid of
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visibility diagrams for the problem discussed in this
paper. In the next section we discuss the visibility
diagram data structure and in Section 3 we present
an algorithm to compute Frèchet distance for paths
on a convex polyhedron.

2 Visibility Diagram

The visibility diagram of a pair of edges, say es and
et, lying on the surface of P is a data structure that
concisely represents geodesic distances between any
pair of points p and q, where p ∈ es and q ∈ et.
(Due to the lack of space we cannot discuss the liter-
ature regarding the computation of geodesic paths on
a convex polyhedron. For detailed discussion on this
we refer the reader to [5, 6, 10].) We make use of the
algorithm of [6], and that in turn makes calls to the
algorithm of [5].

Algorithm 1 Visibility-Diagram
(1) Construct the edge sequence tree T of edge es us-

ing the algorithm of [5].
(2) Identify those edge sequences in tree T which start

at es and end at the edge et. Let the set of these
edge sequences be E .

(3) Unfold each of the edge sequence in E and con-
struct the visibility polygon for each unfolding.

(4) Compute the overlay of the visibility polygons to
obtain the visibility diagram. Label each area in
the overlay with the corresponding edge sequence.

(5) Output the final visibility diagram.

Details of this algorithm are provided in [9]. This
algorithm uses the concept of edge sequence. Ac-
cording to the shortest path properties in [7, 8], a
shortest path Π(p ∈ es, q ∈ et) on P is identified
uniquely by its endpoints and the sequence of edges
{es, e1, e2, ..., ek, et} that it crosses. This sequence of
edges is called an edge sequence of P (ξ(Π(p, q))). The
faces {f1, f2, ..., fk+1} that the shortest path traversed
can be unfolded to a plane, by rotating the face f1 into
the coordinate system of f2 around the common edge
e1 of f1 and f2, and then rotate f1 and f2 to the coor-
dinate system of f3, and so on. Following these steps,
all of the faces can be located in the coordinate sys-
tem of fk+1, and this forms a planar graph. Geodesic
paths in the unfolding map to straight line segments.
Refer to Figure 1(b).
Define the domain z = es × et as a unit square

and it is an affine mapping of the edges es and et on
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Figure 1: (a): A sequence of edges and faces that a
shortest path from p ∈ es to q ∈ et passes through;
(b): The planar unfolding relative to the edge se-
quence; (c): The visibility diagram of es and et. P ′ξ1
corresponds to the outer boundary of the unfolded
edge sequence in (b), which is a polygon. P ′ξ2 corre-
sponds to another unfolded edge sequence.

[0, 1], see Figure 1(c). The visibility diagram is de-
fined as the partition of the domain z, each partition
corresponds to an unfolded edge sequence starting at
es and ending at et. (Mount [8] has shown that the
number of such edge sequences is O(n2).) In a par-
tition the pair of points are visible to one another in
their corresponding unfolded edge sequence. During
the construction of the visibility diagram, if the pair of
points in a partition can see each other in more than
one unfolded edge sequence, then this partition is fur-
ther subdivided, until each partition corresponds to
one unfolded edge sequence. It can be shown that the
boundary between each pair of partition in the visibil-
ity diagram is a hyperbolic curve, and each partition
is a polygon. Observe that geodesic path for any pair
of points in es and et can be computed from their
corresponding unfolded edge sequence in the visibil-
ity diagram. Thus, the visibility diagram for a pair
of edges can be computed by simultaneously overlay-
ing O(n2) visibility polygons corresponding to each
of the unfolded edge sequence; it can be computed in
O(n3 log n) time.

3 Algorithm to compute Fréchet Distance

First we briefly outline Fréchet Diagram for two
polygonal curves Z and Z ′ in plane as described in
[1]. They used affine mapping to represent a continu-
ous and piecewise linear curve. If the curve Z is a line
segment and similarly the curve Z ′ is a line segment
then the set

Fε = {(s, t) ∈ [0, 1]2 | d(Z(s), Z ′(t)) ≤ ε} (1)
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Figure 2: (a): Two segments Z and Z ′ and their
free space diagram for a given ε. (b): Two polygo-
nal curves Z and Z ′ and their free space diagram for
a given ε. A monotone path from (0, 0) to (z, z′) in
the free space diagram.

d

Figure 3: The boundary values of a unit cell in the
free space diagram that must be calculated

describes all of the pairs of points in the affine map-
ping of Z and Z ′, whose Euclidean distance is at most
ε. Figure 2(a) shows line segments Z and Z ′, and a
distance ε > 0; Fε is the white area within the unit
square, which is an ellipse [1], subsequently called as
the free space diagram. Figure 2(b) shows polygonal
curves Z and Z ′ with z and z′ segments, respectively,
and their free space diagram Fε. This is obtained by
combining the free space diagrams for each pair of
segments of Z and Z ′.

Lemma 1 [1] For polygonal curves Z and Z ′ in
plane, their Fréchet distance, δF (Z,Z ′) ≤ ε, only
if there exists a curve within the corresponding free
space diagram Fε from (0, 0) to (z, z′) that is mono-
tone in both coordinates.

In order to ensure that there is a passage for the
path between neighboring cells in the diagram, Fig-
ure 3 illustrates certain boundary values that needs
to be calculated. These values correspond to the in-
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Figure 4: The trapezoidation of a free space after
union. (a) : The free space (white areas). (b) :
After trapezoidation and executing BFS (the dashed
line is one of the paths), the upper boundary value is
cji+1d
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tersections of the ellipse with the boundary of the
cell. Above lemma provides a mechanism to check
whether Fréchet distance is at most ε. In [1] it is
shown that the exact value of the distance is deter-
mined by an ε corresponding to one of the following
cases: (i) (0, 0) ∈ Fε and (z, z′) ∈ Fε, (ii) LF

i,j or
BF

i,j becoming nonempty for some pair (i, j), or (iii)
ai,j = bk,j or ci,j = di,k for some i, j, k. Therefore,
to determine the exact distance, one needs to apply
Lemma 1 for only the set of critical values of ε as de-
termined by the above cases. It turns out that the
total number of critical values is O(z2z′ + zz′2), and
hence Fréchet distance between two paths Z and Z ′

in the plane can be computed in O(zz′ log(zz′)) time.
In the rest of this paper we sketch how we can adapt

the free space diagram with the aid of the visibil-
ity diagrams for the case of convex polyhedron. Let
Z : [0..z] and Z ′ : [0..z′] be the two paths on the
boundary of convex polyhedron consisting of z and z′

segments, respectively. Moreover, Z(i − 1)Z(i) and
Z ′(j − 1)Z ′(j), for 1 ≤ i ≤ z, 1 ≤ j ≤ z′, repre-
sents those segments. For a fixed ε, we construct a
free space cell for a pair of edges Z(i − 1)Z(i) and
Z ′(j − 1)Z ′(j). The outer boundary of the free space
cell is a unit square and it is exactly the same square
as the boundary of the visibility diagram of those two
edges. But the main difficulty arises due to the fact
that the polygons in the visibility diagram belong to
different unfolded edge sequences, and each unfolded
edge sequence has its own coordinate system in the
plane. Because of this, the free spaces of Z(i− 1)Z(i)
and Z ′(j−1)Z ′(j) in the unfolded edge sequences are
different from one another. Thus, we compute the
intersection of the free space cell with the visibility
polygon, where both the cell and the polygon corre-
spond to the same unfolded edge sequence. For each
pair of points in the intersection area, their shortest
path distance is at most ε. The free space diagram of
the unit cell of Z(i− 1)Z(i) and Z ′(j − 1)Z ′(j) is ob-
tained by taking the union of the free spaces for all the
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(a) (b)
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Figure 5: (a)Placing boundary nodes in the trape-
zoidal map. (b)(c): Illustration of placing interior
nodes in the trapezoidal map. (d): Adding arcs be-
tween the nodes to form a directed graph. For sim-
plifying the figures, boundaries of the polygons are
drawn as straight line segments.

corresponding edge sequences. Refer to Figure 4(a).
The free space diagram for Z and Z ′ for a fixed ε is
obtained by applying the above computation steps on
each pair of segments.
Once we have the free space diagram for a specific

value of ε, we need to test whether we have a mono-
tone path from (0, 0) to (z, z′). Observe that if there
is a monotone path then each part of the path in
the corresponding cells must be monotone. The al-
gorithm starts from the first pair of edges including
(0, 0), ends at the last pair of edges including (z, z′),
and computes the boundary values for each unit cell
in the free space diagram subject to the monotone
path restrictions. If (z, z′) can be reached, then this
particular choice of ε results in a valid monotone path
in the corresponding free space diagram. The bound-
ary values for each cell are obtained by performing
breadth first search on a modified dual map of the
trapezoidal decomposition of each cell, refer to Fig-
ure 5. The computation of the boundary values for
a unit cell proceeds in three steps. First, we place
candidate nodes in the trapezoidal map from where a
monotone path could pass through. The nodes placed
on the boundary of the unit cell are candidates for
the boundary values, we use Pstart and Pgoal to mark
them (marked as “ ◦ ” in Figure 5(a)), respectively.
The nodes placed in the interior of the free space cell
(marked as “ × ” in Figure 5(b)(c)) can be reached
monotonically from the neighboring nodes placed ear-
lier. Second, connect the neighboring nodes with the
directed arcs, the arcs must also be in the free space
area. Thus, a directed graph is formed in the free
space area of the unit cell. Third, by applying the
breadth first search in this directed graph, a mono-
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tone path (if it exists) from a starting point Pstart to
a point Pgoal is identified (see Figure 4(b)). There is
a technical detail involved here, and this arises due
to the fact that the edges of the polygons in a unit
cell can be hyperbolic curves or elliptical arcs, refer to
Figure 4(a). Therefore, trapezoidation needs to take
this in account, as well as care must be taken while
placing the nodes to ensure that the directed arcs re-
side in the free space. We omit the details of this part
here.
Suppose that we have already computed the visi-

bility diagram for a pair of edges in O(n3 log n) time.
For a fixed ε, we can show that the union of the free
spaces in the unit cell for the pair of edges can be
computed in O(n2 log n) time, since there are O(n2)
polygons in the visibility diagram; Computing the
boundary value of a unit cell takes O(n2 log n) time,
which includes the trapezoidal map and the directed
acyclic graph construction, and performing breadth
first search. Therefore, in O(zz′n3 log n) time, we
can determine whether Fréchet distance between the
paths Z and Z ′ is at most ε. This is summarized
in the following lemma, and it can be viewed as the
analog of Lemma 1 for the case of convex polyhedron.

Lemma 2 For simple paths Z and Z ′ on the sur-
face of convex polyhedron, their Fréchet distance,
δF (Z,Z ′) ≤ ε, only if there exists a curve within the
corresponding free space diagram Fε from (0, 0) to
(z, z′) that is monotone in both coordinates. More-
over this can be determined in O(zz′n3 log n) time
where z and z′ are the number of the segments in Z
and Z ′, and n is the number of faces on P .

Next we need to determine what are the critical
values of ε, and then we can search among them to
determine Fréchet distance between the paths. The
three kinds of critical values of ε, as in the planar
case, are also suitable for the convex polyhedron case.
But due to the complex nature of cells in this case,
we need to extend the third case; the main idea is
captured in the following observation. Assume that
the minimum value of ε is not determined by the first
two cases. Then we claim that the minimum value of
ε that ensures that there is a monotone path in the
free space diagram will consists of a segment that is
parallel to one of the coordinate axes.
Recall that in the two dimensional case, the third

case corresponds to either ai,j = bk,j or ci,j = di,k for
some i, j, k. In the light of the above observation, for
the convex polyhedron case this needs to be extended
to the case when ai,j and bk,j are located inside the
cells, if we use the same labels for the points inside
the cells as the labels for the boundary values; see Fig-
ure 3. Imagine that the black areas, corresponding to
non feasible regions, where ai,j and bi+1,j are located,
are moved inside the unit cell. These critical values

can be computed from the free space diagrams, and
will require solving a degree four equation in ε since
the boundaries of the corresponding polygons (elliptic
or hyperbolic) are defined by degree two equations.
We claim that there is an upper bound of O((z2z′+

zz′2)n4) on the number of critical values of ε, since
each cell has O(n2) polygons and every two of them
need to be tested in the computation of the third kind
of critical values. In addition to this there are poten-
tially O(zz′n2) critical values for ε as determined in
the first two cases. Sorting the critical values first,
then using the binary search, for each value of ε, we
test whether we can obtain a monotone path in the
free space diagram. The smallest ε, that results in
a monotone path located in the free space diagram,
is Fréchet distance between the paths Z and Z ′. We
summarize the result in the following theorem.

Theorem 3 Fréchet-distance between two simple
paths Z and Z ′ on the surface of a convex polyhedron,
consisting of n triangular faces, can be computed in
O((z2z′+zz′2)n4 log(zz′n)) time, where Z consists of
z segments and Z ′ consists of z′ segments.
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