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A Unified Algorithm for Adaptive Spacetime Meshing
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1 Introduction

Motivation Wave propagation is modeled by hyper-
bolic partial differential equations (PDEs) in both
space and time variables, e.g., the wave equation
utt−ω2uxx = 0 in 1D space × time. A solution to the
PDE is a function u(x, t) that satisfies the equation
and the given initial and boundary conditions. The
wave velocity ω, the velocity at which changes in phys-
ical parameters at a point (x, t) propagate to other
points in the domain, may be a function of x and t as
well as of u and its derivatives. The spacetime discon-
tinuous Galerkin (SDG) finite element method is a nu-
merical method to approximate the exact solution to
the PDE. The SDGmethod approximates the solution
within each spacetime element of a mesh of the space-
time domain as a linear combination of simple basis
functions. The SDG method allows basis functions
to be discontinuous across adjacent elements, which
means that the mesh can even be nonconforming. A
mesh constructed by standard techniques, such as a
Delaunay triangulation, cannot be solved efficiently in
general. Points in spacetime, and spacetime elements,
are partially ordered by causal dependence—a point
P influences another point Q if and only if changing
the solution at P could possibly change the solution
at Q. Spacetime elements must be solved in an order
that respects this partial order. The efficiency of the
solution technique depends on the number of elements
that must be solved together because they depend on
each other and are therefore coupled. In a Delaunay
mesh, there is no guarantee on the size of a coupled
system; we, on the other hand, construct an efficient
mesh where this size is bounded.

Previous work Üngör and Sheffer [6] gave the first
advancing front algorithm, TentPitcher, for meshing
directly in 2D×Time given an initial acute triangu-
lation of the space domain M . TentPitcher advances
the solution over a piecewise linear triangulated front,
a terrain overM ; the initial front corresponds to t = 0
everywhere in space. The front at any step is causal
which means that points on the front depend only
on points in the past. At each step, the algorithm
greedily advances in time a local neighborhood of a
causal front τ to get a new causal front τ ′ and a set
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of new spacetime tetrahedra; causality of τ and τ ′

implies that the solution over the spacetime volume
between τ and τ ′ can be computed immediately. Dif-
ferent parts of the front advance at different rates,
depending on the local geometry, unlike with uniform
time-stepping schemes. The result is a tetrahedral un-
structured mesh Ω of M × [0, T ] for any target time
T . Erickson et al. [2] extended this algorithm to arbi-
trary spatial domains and higher dimensions, by im-
posing additional gradient constraints called progress
constraints on each front.
Abedi et al. [1] gave an algorithm to adapt the

size and—because of the causality constraint—also
the duration of future spacetime elements to a pos-
teriori estimates of numerical error. If the elements
created at any step are too coarse, they are rejected
and the front is refined by repeated bisection; the re-
sulting smaller triangles lead to smaller spacetime ele-
ments. Coarsening or derefinement is performed when
allowed by the error indicator.
Previous algorithms assumed a fixed upper bound

on the wavespeed everywhere in spacetime or that the
wavespeed function was Lipschitz. When the PDE
is nonlinear, the wavespeed is not constant and also
depends on the solution; the wavespeed at a given
point in space can change discontinuously with time.
Anisotropy of the medium means that waves propa-
gate asymmetrically, with different speeds in different
directions. This author [4] gave an algorithm that
works even when the wavespeed increases discontin-
uously and in the presence of anisotropy. However,
this algorithm did not adapt the spatial diameter of
spacetime elements to numerical error estimates.

New results In this paper, we prove bounds on the
worst-case temporal aspect ratio of spacetime tetrahe-
dra constructed by TentPitcher; this ratio, together
with the spatial aspect ratio, is likely to be correlated
with the quality of the numerical solution. We also
prove bounds on the size of the final mesh relative to
a size optimal mesh.
Additionally, we give a unified algorithm that

adapts the size of spacetime elements to error esti-
mates while simultaneously adapting their duration
to changing wavespeeds. This new algorithm meshes
a given spacetime volume with many fewer tetrahe-
dra in general than either of the previous two algo-
rithms [1, 4].
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2 Temporal aspect ratio and mesh size

The initial front corresponds to time t = 0 every-
where in the space domain M ⊂ E2. Imagine time
increasing upwards. At each step, TentPitcher lifts
up a local minimum vertex P of a causal front τ to
the vertex P ′ on a new causal front τ ′. For every
front triangle PQR incident on P , this creates a new
spacetime tetrahedron P ′PQR in the volume between
τ and τ ′, with a causal inflow facet PQR on τ and
a causal outflow facet P ′QR on τ ′. The volume be-
tween τ and τ ′ is called a tent and PP ′ is the tentpole.
Causality implies that the solution everywhere in the
tent can be computed immediately. The number of
new spacetime tetrahedra is equal to the degree of
P ; these tetrahedra are coupled because they share
non-causal facets. Only elements in a single tent are
coupled; tents pitched at different local minima of τ
are independent and are solved in parallel.
Suppose the wavespeed everywhere in spacetime

is constant, equal to ω; let σ denote the slope, i.e.,
σ = 1/ω. Causality means that the slope of PQR and
of P ′QR must be less than σ. To guarantee nondegen-
eracy of tetrahedra, the front at each step must also
satisfy so-called progress constraints. The causality
and progress constraints limit the amount of progress
made by the front at each step of the algorithm, i.e.,
the height of each tentpole; these constraints are func-
tions of the slope σ and the shape of the local trian-
gulation. The progress constraint that each front τ
must satisfy depends on the causal slope encountered
by the new front τ ′ in the next step which, in this
case, is the same slope σ.
The duration of a spacetime element is the length of

the shortest time interval that contains it. The height
of a spacetime element is the length of the longest
time interval contained in it. Our algorithms max-
imize the height of each spacetime element subject
to causality and progress constraints. The progress
guarantee of Erickson et al. [2] can be rephrased as
follows: the height of each spacetime tetrahedra in
the tent pitched at P is at least εσwp where ε ∈ (0, 1

2 ]
is a fixed parameter and wp denotes the distance of
p from the boundary of the kernel of link(p) in the
spatial projection. Thus, the height of the tentpole at
P is bounded from below by a positive function of ε,
the slope σ, and the shape of the triangles in star(p).

Temporal aspect ratio The temporal aspect ratio of a
spacetime element is the ratio of the height of the ele-
ment to its duration; this ratio is always in the range
(0, 1] with a larger value corresponding to a “better”
element. The duration of the tetrahedron P ′PQR
can be at most 2σwp because both facets PQR and
P ′QR are causal. Together with the lower bound on
the height of the tetrahedron, this implies the follow-
ing theorem.

Theorem 1 The temporal aspect ratio of any tetra-
hedron in Ω is at least ε/2.

On size optimality TentPitcher constructs groups of
coupled tetrahedra inside each tent such that the
boundary of the tent is causal. This guarantees con-
vergence of the DG solution [3]. Each tetrahedron
constructed by TentPitcher has both a causal inflow
facet and a causal outflow facet; additionally, the spa-
tial projection of each tetrahedron P ′PQR is the tri-
angle pqr in the original space mesh. Given a triangu-
lationM of the space domain and a target time T , we
say that a tetrahedral spacetime mesh ofM × [0, T ] is
valid if (i) each tetrahedron has both a causal inflow
facet and a causal outflow facet; and (ii) for every
point x in the spatial projection ∆ of each tetrahe-
dron, the diameter of ∆ does not exceed the diameter
of the triangle of M containing x.
Fix an arbitrary point x in space. The size of a

spacetime mesh ofM×[0, T ] is the maximum over x ∈
M of the number of spacetime elements that intersect
the temporal segment x× [0, T ].

Theorem 2 The size of the mesh constructed by
TentPitcher is Õ(1/ε2) times the minimum size of any
valid mesh of the spacetime volume M × [0, T ].

Proof. LetD and ρ denote the diameter and inradius
respectively of the triangle pqr of M containing x.
By causality, any temporal segment of duration 2σD
must intersect at least two distinct tetrahedra in a
valid mesh; therefore, the number of spacetime tetra-
hedra in a valid mesh that intersect x × [0, T ] is at
least �T/(2σD)�.
Consider a minimal sequence of tent pitching steps,

called a superstep, in which each vertex of �pqr is
lifted at least once. When p is pitched, the amount
of progress made by x is proportional to dist(x,←→qr ).
Since dist(x,←→qr ) + dist(x,←→rp ) + dist(x,←→pqr) ≥ ρ, the
amount of progress made by x during a superstep is
at least εσγρ, where γ ∈ (0, 1] denotes the minimum
of wp/dist(p,←→qr ), wq/dist(q,←→rp ), and wr/dist(r,←→pq ).
Hence, after at most �T/(εσγρ) supersteps, the point
x achieves or exceeds the target time T .
By causality, any two vertices of �pqr can advance

in fewer than 4σD consecutive steps without also ad-
vancing the third vertex. Therefore, the number of
steps in each superstep is at most �(4σD)/(εσw)�
where w = min{wp, wq, wr}. It follows that the num-
ber of tetrahedra in the spacetime mesh constructed
by TentPitcher intersected by x × [0, T ] is at most
�T/(εσγρ) · �(4σD)/(εσw)�.
The ratio of the upper bound to the lower bound

on the size is O
(

1
ε2

1
γ

D2

ρw

)
. �
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3 Nonlocal cone constraints

The cone of influence of a point P is the set of points
that depend on P . This cone has its apex at P and
its slope in any spatial direction is the reciprocal of
the wavespeed at P in that direction; fast waves cor-
respond to cones with smaller slope. A front τ is
causal if and only if τ lies below the cone of influ-
ence of every point P on τ ; each such cone is a causal
cone constraint. When the medium is anisotropic,
the cones are asymmetric, e.g., with elliptical cross-
sections. When the PDE is nonlinear or when the
medium is anisotropic, a distant but fast wave, i.e., a
nonlocal cone, can overtake a slower wave and hence
limit the duration of new elements. Therefore, max-
imizing the progress of P , and thus the duration of
new tetrahedra, requires querying the lower hull of
the cones of influence. After the solution is computed
on the new front, we obtain a new set of cone con-
straints. Maintaining the entire arrangement of cones
of influence is expensive and unnecessary for our pur-
pose; it suffices to obtain a cone that bounds (tightly)
the actual cone of influence at P , i.e., to estimate a
lower bound σ̃(P ) on the actual slope σ(P ). We as-
sume the absence of focusing, which means that the
cone of influence of any point P is contained in the
cone of influence of every other point Q such that P
depends on Q. Thus, the slope σ(P ) at P is bounded
so that 0 < σmin ≤ σ(P ) ≤ σmax <∞.
When the wavespeed at a point in space can in-

crease discontinuously, cone constraints must be en-
forced on the front at every step that depend on the
front in the next step. We give an algorithm that looks
ahead k steps of the algorithm to estimate the slope
on future fronts. The lookahead parameter k can be
fixed or chosen adaptively. When k = 0, we assume
that the minimum slope σmin occurs on the front in
the next step, so our estimate of future wavespeed is
σ̃ = σmin. When k > 0, we can use the current esti-
mate to compute the next front and the actual slope
on this new front to refine our previous estimate. We
repeat this process either until subsequent iterations
fail to improve the estimate σ̃ of future slope or un-
til sufficient progress has already been ensured by the
current estimate. (See [4] for the case k = 1.) To effi-
ciently query the arrangement of cones, we use a dis-
crete bounding cone hierarchy induced by a balanced
partition of the triangular front, similar to a bounding
volume hierarchy used in collision detection.
We will prove a minimum progress guarantee of

Tmin > 0, a function of the local shape of the trian-
gulation and the global minimum slope σmin, similar
to that proved by Abedi et al. [1].

Definition 1 (k-progressive) Let �ABC be a
given triangle with A as its lowest vertex. We in-
ductively define �ABC as k-progressive if

(1) �ABC is causal;
(2) Let �A′BC denote the triangle after lifting A by
Tmin to A′. Then, �ABC must satisfy progress con-
straint σ(A′BC) and �A′BC must be max{0, k−1}-
progressive.

Base case k = 0: �ABC is 0-progressive iff it
satisfies progress constraint σmin.

4 Adaptive refinement and coarsening

Abedi et al. [1] gave an adaptive algorithm by
strengthening the progress constraints due to Erick-
son et al. [2]. (This author later [5] corrected an
oversight in their proofs, also slightly improving Tent-
Pitcher.) The adaptive algorithm refines a triangle
on the front using newest-vertex bisection; repeated
bisection of a single triangle gives rise to at most 8
predictable homothetic shapes of front triangles. The
front is coarsened by undoing previous refinement.
The adaptive algorithm enforces a progress constraint
on �PQR at every step that anticipates all the dif-
ferent shapes that can be obtained from �pqr by re-
finement. However, the algorithm of Abedi et al. [1]
does not anticipate changes in the slope and assumes
the minimum slope at every step.
The crucial observation we make here is that a cone

of influence that limits the progress of �PQR may
not limit the progress of a smaller triangle �ABC,
a descendant of �PQR by refinement. (The con-
verse is also true.) Specifically, we observe that
σ̃(ABC) ≥ σ̃(PQR). We obtain a unified algorithm
by relaxing the progress constraints of Abedi et al.
to allow a child triangle after by newest-vertex bisec-
tion to satisfy a potentially weaker progress constraint
than its larger parent triangle. A potential drawback
is that coarsening two sibling triangles coplanar on a
front may require both triangles to satisfy a progress
constraint stricter than their individual progress con-
straints. This can make coarsening requests harder to
satisfy in practice; however, refinement can always be
performed when necessary.
A key property we use in deriving the new progress

constraint is that the boundary of a cone is a ruled
surface; if any triangle �ABC intersects a given cone
this intersection is a line segment in the plane of
�ABC. Therefore, if the bisector edge AD inter-
sects a cone of influence then so do at least two of the
edges of �ABC (Figure 1). Therefore, if a fast wave-
speed in the future intersects AD but not an edge of
�ABC, then it can do so only if �ABC has been
bisected at least once.
Fix ε, ϕ such that 0 < ε < ϕ < (1 + ε)/2 < 1. For

any triangle �abc with newest-vertex a, we define the
diminished width of �abc, denoted by w̃(abc), as the
minimum of (1−ε) dist(a,←→bc ), (1−ϕ) dist(b,←→ac ), and
(1− ϕ) dist(c,←→ab ).
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Figure 1: �abc after newest-vertex bisection.

Definition 2 (Progress constraint σ) A triangle
�ABC (Figure 1) satisfies progress constraint σ
if and only if the applicable constraint from the
following list is satisfied:
If a is the lowest vertex: |t(b)− t(c)| ≤ 4w̃(fda)σ
If b is the lowest vertex: |t(a)− t(c)| ≤ 2w̃(dab)σ
If c is the lowest vertex: |t(a)− t(b)| ≤ 2w̃(dca)σ

Definition 3 ((k, l)-progressive) We inductively
define a triangle �PQR as (k, l)-progressive if
it is k-progressive (Definition 1) and any child
�ABC obtained by newest-vertex bisection is
(k,max{0, l − 1})-progressive.

Base case l = 0: �PQR is (k, 0)-progressive
if an arbitrary descendant �ABC obtained by
newest-vertex bisections satisfies progress constraint
σ̃(PQR).

A front is progressive if every triangle on the front
is (k, l)-progressive for some k, l ≥ 0. Our unified
algorithm greedily maximizes the progress such that
each front is (k, l)-progressive for some choice of k and
l. The algorithm can be as complicated as desired.
Definition 3 stresses the fact that our algorithm can
optimize the choice of k and l, likely doing better than
the theoretical guarantee; however, a simple choice of
k = l = 1 may suffice in practice.

Lemma 3 (1) If a front τ is progressive, then the
front after bisecting a triangle of τ is also progressive.
(2) If a front τ is progressive, then for any local min-
imum vertex P the front τ ′, obtained from τ by ad-
vancing P in time by Tmin, is progressive.

Proof. (1) By Definition 3, if a triangle PQR of
the front τ is (k, l)-progressive, then either of the
two smaller triangles after bisecting �PQR is (k, l′)-
progressive for l′ = max{l − 1, 0}.
(2) This part was essentially proven by Abedi et

al. (see [5]) when each triangle PQR on the front τ
satisfies progress constraint σ(P ′QR). Our algorithm
ensures �PQR satisfies progress constraint σ̃(PQR),
where σ̃(PQR) ≤ σ(P ′QR). Because the progress
constraint is monotonic in the slope σ, �PQR auto-
matically satisfies progress constraint σ(P ′QR). The
algebraic details are straightforward [5] and are omit-
ted here for lack of space, to appear in a forthcoming
paper. �

By induction on the number of tent pitching and
refinement steps, we have the following theorem.

Theorem 4 Given a triangular mesh M ∈ E2 and
a target time value T , our algorithm builds a finite
tetrahedral mesh of the spacetime domain M × [0, T ],
provided each triangle is refined only a finite number
of times.

5 Conclusion and open problems

We gave an advancing front spacetime meshing algo-
rithm that unifies previous algorithms [1, 5, 4] which
tackled nonlinearity and adaptivity separately. The
unified algorithm constructs a 2D×Time mesh with
provable guarantees, for the efficient solution of non-
linear and anisotropic problems. We will report ex-
perimental results in the near future.
We would like to extend adaptivity to 3D and

higher dimensions. The space domain often changes
with time; for instance, in the simulation of rocket
fuel combustion, the shape of the residual fuel changes
with time. We propose to include other front modi-
fication operations, such as edge flips, in addition to
pitching inclined tentpoles, into a new meshing al-
gorithm. The new algorithm will track features in
spacetime, such as phase and domain boundaries and
shock fronts, by aligning mesh facets along such fea-
tures. The SDG method accurately captures the dis-
continuous solution when mesh facets align exactly
with such singular surfaces.
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