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In the lectures I give all over Japan, I have always tried to give the audience an 
unforgettable experience of mathematics. This is accomplished through a careful 
choice of relevant topics such as the applications of mathematics in daily life and 
also through the use of specially crafted hands-on models that help to demonstrate 
the beauty of mathematics. In this talk, I will discuss some of these choice topics 
and present some of those models, namely:  
 

1. Mathematics in Music 

a) La Galerian musical performance 

b)  Three harmonies:  
do-mi-sol, do-fa-la, si-re-sol 

c)  The Pythagorean Theorem 
 
d)  Listen to the sound of Numbers 

Finite decimals 
     Infinite repeating decimal 
     Infinite decimal 
e)  A spiral xylophone 

  f)  CD 

2. An Important Property  

of the Reuleaux Triangle 

a)  Manhole covers 
b)  Square drill and hexagonal drill 
c)  Vehicle wheels with constant width 
d)  Rotary engines 

 

 

Models and Experiments 
 
a)  Two music scales 
    Accordion 
b)  Circular scales 

A loop marked with 12 equal distances 
c)  Slide Type 
    Three elephants 
d)  Organite (big size) 
    Spanish Song (punch cards) 
    1/8, 5/7, π 
e) A spiral xylophone 
 
f) CD player and CD 
 
 
 
a) Manhole covers 
b) Square & hexagonal drills 
c) Vehicle wheels with constant width 
d) Rotary engines 
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3. Applications of Conic Sections 

a)  Ellipse: ESWL 
b)  Parabola: Solar cookers 
 
c)  Hyperbola: Gears 

 

4. Think Your Way through Math 

a)  Area of a circle 
b)  Surface of a sphere 
c)  Volume of a sphere 
d)  Volume of a rhombic dodecahedron 

 
 
a) Ellipse bowl 
b) Parabola and ping pong balls 

Solar cookers 
c) Twisted cylinder 

Gears 
 
 
a) Baumkuhen type 
b) Onion slice model finding 4πr2 
c) Water Melon 
d) Fox-snake (rhombic dodecahedron↔ box) 

Reversible Solid  
(truncated octahedron ↔box) 

Tool peeling skin apples 
Apples 
 

 



1. Mathematics in music 
 
a) La Galerian musical performance 
 do do

re

re

mi

fa
fasol

sol

la

la

si #

#

#

#

#
b) Three harmonies 

In a circular scale (Figure 1.1) the twelve 
semitones in music, do, do#, re, re#, mi, mi#, fa, sol, 
sol#, la, la#, si are arranged in a balanced circle. In 
the three harmonies, do-mi-sol, do-fa-la, si-re-sol, 
the distances between the three notes are 4-3-5, 
5-4-3 and 3-5-4, respectively.  

 Figure 1.1 
c) The Pythagorean Theorem 
 Then you will find that all distances have the 
sequence 3-4-5.   
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What do you remember of the ratio 3:4:5 ?  Form 
a piece of string into a loop and stretch it out by 
holding the three points which divide the string in 
the ratio 3:4:5. The result is shown in  Figure 1.2. 
The ratio 3:4:5 is a typical ratio for sides of right 
triangles.   Figure 1.2 

Besides 3:4:5, the ratio 5:12:13 is also the ratio 
for sides of a right triangle. There are infinitely 
many such ratios. 

Let x, y, z be sides of a right triangle where z is 
the hypotenuse. Then the Pythagorean theorem 
states . The model (Figure 1.3) 
provides a visual illustration of the Pythagorean 
Theorem. It has three thin containers with square 
cross sections mounted on a circular base. The 
dimensions of the squares are determined by the 
Pythagorean Theorem. Initially, each of the 
smaller containers is filled with pieces of plastic. 
As the circular base rotates, the pieces from the 
smaller containers fall into the larger container 
and fill it up exactly.  

222 zyx =+

Figure 1.３ 
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 Instead of squares let’s take any three similar 
figures, for example, the elephants in Figure 1.4. 
They can be used to illustrate as long as the ratios 
of lengths of their sides equal those of a right 
triangle. By using a balance, we can show that 
the weight of the two small elephants equals the 
weight of the large elephant when the thickness 
is the same.  Figure 1.4 

  
 
d) The Sound of Numbers 

An Organite(Figure 1.5) produces music using 
a paper sheet with punched holes. We can hear 
the music of numbers. Let 0(zero) correspond to 
“do”, 1 to do#, “2” to re, …,and so on. What is the 
melody for .125(1/8)?  The music has only three 
notes and it is very short! How 
about .714285714285714285…(5/7) ? It is an 
infinite repeating decimal, so its melody is 
repeated. Such numbers are called rational 
numbers. Now π (the circular constant) is 
3.1415…., and there is no repeated pattern in its 
infinite decimal part. So the melody is endless 
without repeating. Such numbers are called 
irrational n

Figure 1.5 

umbers. 
 

e) A Spiral Xylophone 

 Figure 1.6 is a spiral xylophone. A wooden ball 
from the top of the spiral rolls down and plays 
music! The length of a key determines its tone,   
and the spacing of the keys determines the rhythm. 
Pauses are caused by keys that are covered with 
felt. Please enjoy the music! 

Figure 1.6 
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f) CD 
Let’s listen to music from a CD. Those are 

beautiful songs. Let’s make a few scratches from 
the center of the CD to the edge with a sharp pin 
(Figure 1.7), then play the CD again. Surprise! 
There is no difference! We can still hear the music 
clearly.  
How are CD’s protected from scratches?  Some 
kind of mathematics is at work – the principle 
behind error correcting codes. 

Figure １.7 
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2. An Important Property of the Reuleaux Triangle 
 

a) Manhole Covers 
 Why are manhole covers round? 

A square cover can fall into a square manhole 

of the same size (Figure 2.1).  This is because 

the diagonal of a square is longer than the length 

of its sides.  On the other hand, a round cover 

cannot fall into a round manhole of the same size 

because a circle has constant width, i.e., the 

distance between any two parallel lines which are 

tangent to the circle is constant. 

 

Other figures of constant width can also be 

used successfully as manhole covers.  One such 

figure is the Reuleaux triangle (the lower right 

manhole cover in Figure 2.1).  To draw a 

Reuleaux triangle, start with an equilateral 

triangle.  Then, using one vertex of the triangle 

as a center and a side of the triangle as a radius, 

draw a circular arc of 60 degrees.  Do the same 

using each vertex in turn (Figure 2.2). 

Figure 2.1 

Figure 2.2 

 

There are infinitely many figures of constant 

width, among them are Reuleaux pentagons, 

Reuleaux heptagons, etc. 

 

b) Square Drill and Hexagonal Drill 

A standard drill makes a round hole, but the 
drill in Figure 2.3a makes a square hole.  The  
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Figure 2.3a



blades are patterned after a Reuleaux triangle.  
A flexible axis allows the blades to rotate within 
a space confined by the circumference of a 
square as shown in Figure 2.3b.  A square hole 
results. 

Figure 2.3b

 
This drill (Figure 2.4a) has blades patterned 

after a Reuleaux pentagon.  The axis is flexible 
as  

Figure 2.4a

with the square drill.  The blades rotate within 
a space confined by the circumference of a 
hexagon to form a hexagonal hole(Figure 2.4b). 

Figure 2.4b 

 

c) Vehicles with Wheels of Constant Widths 
A board placed on top of two logs is sometimes 

used to move heavy loads.  The circular 
cross-sections of the logs allow them to roll 
smoothly.  The same can be said about rollers 
whose cross-sections are other figures with 
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Figure 2.5a 



Figure 2.5b

constant width as is demonstrated by these 
devices(Figure 2.5a & b).  

    The wagon shown in Figure 2.6 has wheels, 
which are warped, but the carriage moves 
smoothly in the horizontal direction because the 
wheels have constant width. If ordinary axles 
were attached to these wheels, then they go up 
and down as the wheels rotate and the carriage 
will not move horizontally. In this wagon, axles 
are made of boards with the shape of Reuleaux 
triangles and these Reuleaux triangles within 
square frames circumscribe them. Therefore, 
the carriage,which is attached to these square 
frames, always remains the same distance 
away from the ground when the axles rotate. 
Consequently, the carriage moves horizontally. 
This wagon was invented by the Mexican high 
school students, Sebastian von Wuthenau 
Mayer and Claudia Masferrer Leon. 

Figure 2.6 

 
d) Rotary Engine 

 In most engines, a piston which moves up and 
down triggers the four mechanical jobs of gas 
intake→compression→combustion→exhaustion. 
In a rotary engine, however, it is a rotating 
triangular rotor that causes these four functions.  

There are two important components for rotary 
engines: a broad bean-like housing, and a 
triangular shaped rotor. The rotor rotates inside 
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 Figure 2.7 



the housing, its three vertices touching the 
housing all the time (Figure 2.7). The space 
between the housing and the rotor is divided into 
three chambers and the volume of each chamber 
changes as the rotor turns. 

At first, the intake of gas increases the volume of 
one chamber.  As the rotor moves, this volume 
decreases. The change in the volume of gas makes 
intake→compression→explosion→exhaustion  
possible (Figure 2.8). 

 

Intake   Compression   Explosion   Exhaustion 

 

 

 
Figure 2.8 
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3. Applications of Conic Sections 

a) Ellipse：Extracorporeal shock wave lithotripsy 
(ESWL) 

ESWL is a modern medical procedure often used 
to shatter kidney stones without surgery.  In this 
treatment, shock waves are generated outside the 
body of the patient (hence, the term 
“extracorpo eal”) and are delivered to the kidney 
stones via an ellipsoidal reflecting medium.  The 
intensity of the shock waves causes fragmentation 
of the stones. 

r

 

Figure 3.1 

Kidney stones 
F’ 

Shock 
F 

 
 
 
 
 
 
 
 
 

 The principle behind ESWL is that of the 
properties of the ellipse. An ellipse is a set of points 
on the plane, the sum of whose distances from two 
fixed points F and F’, called foci, is a constant.  In 
ESWL, shock waves are generated from one focus 
and travel through the ellipsoidal medium.  The 
waves are then reflected to the other focus where 
the kidney stone is located(Figure 3.1). 
 

Figure 3.2 

b) Parabola 
A parabola consists of a set of points which are 

equidistant from a point called the focus and a line 
called the directrix (Figure 3.2).  
It is easily verified that a ray parallel to the axis of 
the parabola will always be reflected to the focus 
once it hits the parabola (Figure 3.2).  The device 
shown in Figure 3.3 makes use of this property.  It 
shoots balls from a rail which is perpendicular to the 
 10



axis of a parabola that serves as a reflecting board.  
The balls are shot in the direction of the parabola and 
are always reflected to the hole which is located at 
the focus of the parabola. 

Figure 3.3 
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Figure 3.4). 

  A parabolic antennae concentrates light at its focus.  
It is interesting to watch such an antenna use the 
sun’s rays to bake a potato located at its 
focus(
 
 
 
 
 
 

Figure 3.4  
 
c) Hyperbola: Gears 

The first model (Figure 3.5) is a cylindrical 
framework which is converted, with one twist, into a 
hyperboloidal framework.  The second model (Figure 
3.6) is a differential gear which transmits motion.  The 
two parts of the gear are hyperboloidal [HC]. 

 

 
Figure 3.5 

Figure 3.6 



4. Think your Way through Math  
 
a) Area of a circle 

  How can you explain the area of a circle with the 
radius r is π r 2?  Figures 4.1 and 4.2 show how the 
area of a circle can be approximated by the area of 
an isosceles triangle whose base is equal to the 
length of the whole circular arc and whose height is 
the radius. Hence the area  of the circle is 

)()(
2
1 heightbase ××  of the isosceles triangle, or 

22
2
1 rrr ππ =×× . 

Dissect and
open a circle

radius r

circumference rπ2 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) Surface Area of a Sphere 
 The surface of a sphere is approximated by the 
following device. A length of plastic tube is used to 
line the surface of a hemisphere. The tube extends 
to line the interior of two circles with a radius 
equal to the radius of the hemisphere, say r (Figure 
4.3). Colored liquid is pumped into the tube until 
the length covering the entire surface of the 
hemisphere is filled. The liquid is then made to 
descend to the two circles. It is at the point that the 
hemisphere empties completely when the two 
circles are completely filled. This observation leads 
to the following conclusion: 
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Figure 4.1
Figure 4.2
Figure 4.3



     Surface area of a hemisphere  
=  (area of the circle) 2 ×

or 
Surface area of a sphere      

=  (area of the circle) = . 4 × 4 2πr
 
 

c) Volume of a Sphere 
     The volume of a sphere can be approximated 
by packing the sphere with cones whose heights 
are equal to the radius of the sphere, say r  
(Figure 4.4). A device based on this idea is shown in 
Figure 4.5. Thus 

Volume of sphere  
4= ∑(volumes of all cones) 

= ∑
1
3
× (height of cone) (base area of cone) ×

= 
1
3
× ×r ∑(base areas of all cones) 

= 
1
3
× ×r (surface area of sphere) 

= 
1
3

4 2× ×r rπ = 
4
3

3πr  

 Figure 4.5
d) Volume of a rhombic dodecahedron 

How to Construct a Fox-Snake 
To begin with, in order to explain the structure 

of a rhombic dodecahedron, we construct a solid 
with double crosses by using 7 cubes of the same 
size as shown in Figure 4.6. If we take one of these 
cubes and dissect it, as shown in Figure 4.7, by 
means of 6 planes going through the center of the 
cube, then 6 pyramids (pentahedra with a square 
base) will be obtained. If we perform this dissection 
to each of the 6 cubes other than the central cube of 
the solid with double crosses of Figure 4.6, and 
discard those pyramids which are not touching 
face-to-face with the central cube of the solid with 
double crosses, then we end up with the rhombic 
dodecahedron of Figure 4.8.   
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From the construction above it is clear that a 
rhombic dodecahedron has 14 vertices, consisting 
of 8 vertices of the central cube and 6 “centers” of 
the surrounding pyramids (the “center” of a 
pyramid being the point of intersection of the 4 
edges of the pyramid). We can also see that if we 
partition the space into adjacent cubes and color 
these cubes black and white in a 3-dimensional 
chess-board pattern, and then place these rhombic 
dodecahedrons in space by putting the central cube 
of each of them on the spot where a black cube is 
located, then the entire space can be filled, i.e., 
rhombic dodecahedrons are space-filling solids. 
Furthermore, we see that the volume of a rhombic 
dodecahedron is twice that of the central cube, and 
therefore, is the same as the volume of the 
rectangular parallelepiped shown in Figure 4.9. 
 

Next, if we dissect the rhombic dodecahedron 
of Figure 4.8 by means of 3 planes parallel to the 
faces of the central cube and intersecting at the 
center of the cube, then the rhombic dodecahedron 
is partitioned into 8 congruent hexahedrons.  
Figure 4.10 (a) shows one of these hexahedrons and 
Figure 4.10 (b) shows its development. If we put 
together 4 of these hexahedrons in such a way that 
the vertices, corresponding to the vertex A of Figure 
4.10, of the four hexahedrons come together, then a 
cube will result. Figure 4.11 illustrates this fact: l  

GC
●

129.9 mm

1

35.26°
45°

A

B

D
C E

getting out
a hexahedron

(a) 

Figure 4.10
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Figure 4.8
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F
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109.47°
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45°
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lengths of the 3 line segments EB, EC and ED 
are all equal to the length of an edge of the resulting 
cube, and these line segments are pair-wise 
perpendicular. Also, the points F, G, H in Figure 4.11 
are the mid-points of the segments EB, EC and ED, 
respectively, and they lie on 3 different faces of the 
resulting cube. Since we know that the rhombic 
dodecahedrons of Figure 4.8 are space filling, we can 
conclude that 4 hexahedrons will yield a cube if they 
are glued in such a way that the vertex of each one, 
corresponding to the vertex A, come together. 

A

G E H D
C

●

●
●

B

F

    
Now that we know that a cube will result by 

putting together 4 hexahedrons of Figure 4.10 in a 
specific way, we see that the rectangular 
parallelepiped of Figure 4.9 can still be constructed 
from an aggregate of 8 hexahedrons resulting from a 
dissection of a rhombic dodecahedron, hinged 
together as shown in Figure 4.12. This shows that a 
rhombic dodecahedron of Figure 4.8 and rectangular 
parallelepiped of Figure 4.9 can be obtained from 
one another by “jointed turning inside out.” 
Furthermore, two pairs of hexahedrons indicated by 
arrows in Figure 4.12 are joined together 
invariantly throughout the process of “turning 
inside out”, and therefore, it is unnecessary to 
dissect each of these pairs into 2 hexahedrons, 
respectively. This fact enables us to obtain an even 
more elegant method of obtaining dissections 
turning a rhombic dodecahedron into a rectangular 
parallelepiped and vice versa. Yasuyuki Yamaguchi, 
a plastic artist, created an artistic object called 
“fox-snake”, based on the idea of this “jointed 
turning inside out”, by painting a fox on the surface 
of a rhombic dodecahedron and a rat snake on that 
of the rectangular parallelepiped obtained by 
turning inside out (see Figure 4.13). With this object 
you notice, by pulling a string, a fox gets gobbled up 
instantly by a rat snake.  Having seen this 
amusing object, we decided in our seminar to call  
 15
Figure 4.11 
Figure 



this model of “jointed turning inside out” the 
“fox-snake” model.  
 

 
                                Figure 4.13 

 
 

 The reason why a rhombic dodecahedron 
(Figure 4.8) and a rectangular parallelepiped 
(Figure 4.9) can be obtained from each other by the 
process of “jointed turning inside out” can be 
explained more theoretically by using the fact both 
of these solids are space filling solids; however, we 
omit the explanation since a graphic description of 3 
dimensional objects gets very complicated.   
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