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Abstract

Fencing problems deal with the bisection of a convex body in a way that some geometric measures are optimized.
We study bisections of planar bounded convex sets by straight line cuts and also bisections by hyperplane cuts for
convex bodies in higher dimensions.
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1. Introduction

Fencing problems regard the division of a given
set into two subsets of equal area in a way that some
geometric measure is maximized or minimized.

Last year we pointed out results on centrally
symmetric convex sets in two dimension. Now we
present a statement in the general planar case,
where K is a general convex body. Moreover we
study fencing problems in higher dimension.

First we need to recall definitions and some re-
sults.
Definition Let K be a planar, bounded, convex
set and let K1,K2 ⊂ K. We say that {K1,K2} is
a bisection of K if the following conditions hold:

(i) K = K1 ∪K2.
(ii) int(K1) ∩ int(K2) = ∅.
(iii) V (K1) = V (K2) = 1

2V (K), where V (.) is the
area functional.

(iv) K1 and K2 are connected subsets such that
γ = ∂K1∩∂K2 is an arc of continuous curve
joining two points in ∂K.

We say that γ bisects K.
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In the planar case we replace the volume func-
tional V (.) by the area functional A(.).

We define the relative diameter d(K1; K) as fol-
lows:

d(K1;K) = max{D(K1), D(K \K1)},

where D(·) is the diameter functional, and
{K1, K2} is a bisection of K.

The following propositions give us properties re-
garding subdivisions 1) by straight lines, 2) by gen-
eral curves.

Theorem 1 Let {K1,K2} be a bisection of a pla-
nar, centrally symmetric, and bounded convex set
K by a straight line l. Then

(i) One of the ends of the diameter of K1 is one of
the intersection points of l with ∂K. Denote
this point by M .

(ii) The other end of the diameter of K1 is the
intersection of ∂K with the smallest circle
centered at M and containing K1; the radius
of this circle is obviously d(K1;K).

Theorem 2 Let K be a planar, centrally symmet-
ric, and bounded convex set. Let γ be a continuous
curve bisecting K into two connected subsets E1 and
E2. Suppose that d(E1;K) realizes the minimum of
the relative diameter for all the curves bisecting K.
Then there exist a straight line, passing through the
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center of K, bisecting K into two subsets {F1, F2}
such that d(F1; K) = d(E1; K).

Moreover we obtained a global estimate for the
ratio between the area and the relative diameter:

Theorem 3 Let K be a planar, bounded, and
centrally-symmetric convex set with area A. For
every bisection {K1,K2} of K the relative diame-
ter satisfies the following inequality

d(K1; K) ≥ C
√

A

where

C ∼= 0.8815....

Equality holds if K is the body Kϕ0 described in
the figure:

dM

M N

2. Minimizing the relative diameter for
planar convex sets

Now we shall consider bisections of a general
convex set by straight line cuts. We prove that cen-
trally symmetric convex sets minimize the relative
diameter.

First of all we need to introduce the following
notations. Let us consider a general convex set K,
and let l be the straight line bisecting K; let l+ and
l− be the half-planes defined by such a line. Let us
define:

d(K) = minl∩K 6=∅dl(K),

where dl(K) = max{D(K ∩ l+), D(K ∩ l−)}.

Theorem 4 In the class of convex sets K with area
A the minimum of the relative diameter, with re-
spect to straight line cuts, is attained on a centrally
symmetric convex set.

PROOF. Let the area A of K be fixed, and let l0
be the line such that

dl0(K) = d(K).

Let us choose the origin to be the midpoint of the
chord K ∩ l0. Let us apply Steiner symmetrization
with respect to l⊥0 . Then we obtain a new body K

′

such that A(K
′ ∩ l+) = A(K

′ ∩ l−) = 1
2A and

D(K
′ ∩ l+0 ) ≤ D(K ∩ l+0 ),

D(K
′ ∩ l−0 ) ≤ D(K ∩ l−0 ),

so that

dl0(K
′
) = max{D(K

′ ∩ l+0 ), D(K
′ ∩ l−0 )} ≤

≤ max{D(K ∩ l+0 ), D(K ∩ l−0 )} = dl0(K).

In order to minimize the relative diameter for
fixed area it is enough to consider bodies which are
symmetric with respect to l⊥0 , where l0 realize the
minimal cut. Let K

′
be such a body.

Let now K
′∩l+0 the part of K

′
such that d(K

′
) =

D(K
′ ∩ l+0 ). We consider two cases.

1) First case: the support lines of K
′
at a, b (end-

points of K
′ ∩ l0) meet at a point p ∈ l+ or are

parallel. Then we have the following situation.

K
′ ∩ l+0

a b

l0

Applying the symmetrization with respect to the
line l0 we obtain a new body which is centrally
symmetric and has the same relative diameter as
K
′
. We apply then the argument for centrally sym-

metric bodies in order to get the best constant.

2) Second case: let us suppose that the support
lines of K

′
at a, and b meet at a point p ∈ l−.
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a b
l0

K
′ ∩ l+0

Since

d(K
′
) = D(K

′ ∩ l+0 ) ≥ D(K
′ ∩ l−0 )

then
∀x ∈ K

′ ∩ l+0 : dist(a, x) ≤ d(K
′
)

∀x ∈ K
′ ∩ l−0 : dist(b, x) ≤ d(K

′
)

Thus K
′

is contained in the intersection of the
two disks with centers a, b respectively and radius
d(K

′
). Moreover K

′ ∩ l−0 ∈ T where T is the in-
tersection of the previous lens with the triangle in
the half-plane l−0 determined by the support lines
passing trough a and b. So if we take as new body
K̃ given by the union of T and its symmetric with
respect to l0 we have a centrally symmetric convex
body where l0 realizes a bisection having d(K̃) =
d(K

′
) and area of K̃ greater then the area of K

′
.

3. Fencing problems on higher dimension

We now consider fencing problems on higher di-
mension determined by hyperplane cuts. We say
that a convex body K on Ed is a minimizer for such
a fencing problem if the relative diameter of a bi-
section {K1,K2} of K attain the minimum value.

We give a necessary condition for a convex body
K to be the minimizer. We also describe geometric
properties of best bisections of centrally symmetric
convex bodies and obtain a lower bound for the
ratio

d(K1; K)
V (K)1/d

.

Theorem 5 In the class of convex bodies in Ed

with volume V the minimum of d(K1; K), with re-
spect to hyperplane cuts, is attained on a centrally
symmetric convex body of revolution.

PROOF. Let K ⊂ Ed be a body for which
d(K1; K) attains its minimum, and let H be the
hyperplane cutting K into two parts K1,K2 such
that d(K1;K) = D(K1). By applying Schwarz
rounding symmetrization (see [2] and [12]) with
respect to a line l perpendicular to H, we obtain
a body of revolution K ′, with same volume V ,
which is bisected by H into two parts K

′
1, K

′
2 such

that V (K
′
1) = V (K

′
2) = V/2. As the Schwarz

symmetrization does not increase the diameter,
the value of d(K1; K) does not increase, so that
by the minimality of K, the body K ′ also realizes
the minimum of d(K1; K).

...................................................

...............................................
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Let us consider the tangent cone Γ of K ′ along
the (d−1)-sphere K ′∩H. We distinguish two cases.

(i) Suppose that Γ is a right cylinder and de-
note by K ′′

2 the image of K ′
1 by the orthogo-

nal reflection with respect to the hyperplane
H. Then the convex body K ′′ = K ′′

2 ∪K ′
1 is

a centrally symmetric convex body of revo-
lution with a bisection {K ′′

2 ,K ′
1} for which

d(K1;K) attains its minimum.
(ii) Suppose that Γ is a cone with apex v ∈ l.

Denote by H+ the half-space bounded by H
which contains v. Let K ′′

1 = K ′∩H+ and let
K ′′

2 denote the image of K ′′
1 by the orthogo-

nal reflection with respect to the hyperplane
H. Then the convex body K ′′ = K ′′

2 ∪K
′′
1 is

a centrally symmetric convex body of revo-
lution with a bisection

{
K ′′

2 ,K
′′
1

}
for which

d(K1;K) = D(K ′′
2 ) = D(K

′′
1 ) = D(K ′ ∩

H+) ≤ D(K1). Thus d(K1;K) attains its
minimum on K ′′ as well.

Therefore, in order to minimize the ratio

d(K1; K)
V (K)1/d
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it is enough to find for fixed d(K1; K) the body
with maximum volume within the class of centrally
symmetric bodies of revolution. To this end we first
extend Proposition 1 on the planar centrally sym-
metric case.

Theorem 6 Let {K1,K2} be a bisection of a cen-
trally symmetric convex body K by a hyperplane H,
and let D(K1) = max {D(K1), D(K2)}. Then
– one of the end points of the diameter of K1 be-

longs to H ∩ ∂K. Let M be such a point.
– The other endpoint of the diameter is the inter-

section of ∂K with the sphere centered at M with
radius D(K1).

PROOF. Let A,B denote the endpoints of the
diameter of K1. We can assume that the center of
K is the origin O. Suppose by contradiction that
A,B /∈ H∩∂K. By construction the points A,B,O
are not collinear. Let us consider the plane π pass-
ing through A,B, O. We define K ′ = K ∩ π, K ′

1 =
K1 ∩π, K ′

2 = K2 ∩π. We obtain a bisection of the
centrally symmetric planar convex body K ′ such
that max {D(K ′

1), D(K ′
2)} is attained on the seg-

ment with endpoints A,B. This contradicts Propo-
sition 1 on the planar centrally symmetric case.
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