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In the following discussion we explore techniques for finding lower bounds for running 
times of randomized game tree algorithms, and also address the general issues of 
randomization and non-uniformity in algorithms. 
 

Lower Bounds 
 
First, we’ll discuss a method for obtaining lowest possible bounds for randomized game 
tree evaluation algorithms.  
 
A randomized game tree evaluation algorithm can be viewed as a probability distribution 
over deterministic game-tree algorithms applied to random game tree instances.  Thus, 
we can use Yao’s Minimax principle for our task.  
 
The Yao’s Minimax principle is essentially based on the following observation: 
 
To find the lower bound for a randomized algorithm, it is sufficient to specify a 
probability distribution on its input data and then prove a lower bound on the expected 
running time of any deterministic algorithm operating on these data. 
 
(One should note that this statement holds ONLY for Las Vegas algorithms!) 
 
In our case, this means specifying a probability distribution on the values of the leaves of 
a game tree and then finding the lower bound for any deterministic game-tree evaluation 
algorithm applied to this tree.  
 
Although we could work with general 
MIN-MAX trees, in order to simplify the 
mathematics of our discussion we will focus 
our attention on so-called AND-OR trees.  
An AND-OR tree is a special type of binary  
MIN-MAX tree, where [AND] and [OR] nodes 
are MIN and MAX nodes, respectively.   
Possible values for tree leaves are, of course, 
binary “0” or “1”.   
 
 
 



The first step is a simple modification of an AND-OR tree, which replaces all [AND] and 
[OR] nodes by equivalent elements composed of [NOR] nodes (i.e. an [OR] is a negated 
[NOR] etc).  
 

 
This yields a NOR tree (which has the same depth due to redundancy of some of the 
inner nodes). Though identical in terms of functionality, it also possesses a completely 
homogenous structure, which further facilitates our calculations.   
 
 

 
 
 
 
 
 
 
 

 
Second, we need to specify a probability distribution on values of the leaves. Each leaf is 
independently set to “1”, with the following probability: 

 
(Note: our peculiar choice of p will be justified by the next equation.) 
 
The probability of a [NOR] node’s output being “1” is the probability that both inputs are 
“0”, i.e.: 

  
Now we consider some properties of a deterministic algorithm evaluating our tree. Since 
we would like to minimize its running time, we make use of the following observation: 
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For a [NOR] node, the output value will be “0” if one of its 
children returns “1”. In such cases, the other child (possibly 
an entire sub-tree) will not influence the result, and 
therefore, doesn’t need to be inspected.   
This leads to a notion of Depth-First Pruning algorithms 
(DFPA). A DFPA essentially functions like a DFS, but it 
also stops visiting sub-trees of a node once its value has 
been determined – sub-trees that yield no additional 
information are “pruned” away.   
 
Observe the following proposition:  
 
Let T be a NOR tree, with all leaves set to the aforementioned distribution. Let )(TW  
denote a minimum, over all deterministic game tree algorithms, of the expected number 
of steps to evaluate T.  Then, there exists a DFP algorithm, whose expected number of 
steps to evaluate T is )(TW . 
 
Thus, for the purposes of our discussion, we may restrict ourselves to DFPAs. 
For a DFPA, traversing a NOR tree with n leaves and aforementioned probability 
distribution, the following holds: 
 
Let h be the distance from the leaves to the node in 
question. Let )(hW denote the expected number of 
leaves the DFPA will need to inspect in order to 
evaluate the node. 
Then:               

 
Here )1( −hW is the expected number of leaves visited 
while evaluating one of the sub-trees of the node. The 
factor )1( p−  before the second term arises from the 
fact that the other sub-tree will only be visited if the 
first sub-tree yielded 0, which will happen with the 
probability of )1( p− . 
 
(Note: there is no factor p before the first term, as one might expect, because one of the 
sub-trees must be visited under all circumstances, i.e. with 100 percent probability.) 
 
Now we let h = log2n (since we are working with a binary tree), and substitute it into the 
above equation.  The solution of this equation produces the following result: 
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We have thereby proven the following theorem: 
 
The expected running time of any randomized algorithm that always evaluates an 
instance of a binary MIN-MAX tree correctly is at least n0.694, where n=2k is the number 
of leaves.  
 
Our result is slightly less than the bound of n0.793 presented in the previous discussion by 
Alexander Hombach. However, our method is correct (since it is based on Yao’s 
Technique). One possibility is that our distribution of input values is not optimal, since it 
does not preclude the possibility of both inputs to a NOR node being “1”. A distribution 
that prevents such a possibility would show that the evaluation algorithm introduced in 
the previous presentation is indeed optimal. 

 
 

Randomness and Non-Uniformity 
 
In the second part of our discussion, we try to answer the following question: 

 
When is it possible to remove randomization from a randomized algorithm? 

 
For our analysis we need to introduce the notion of a randomized circuit. First, we give 
the definition of a Boolean circuit: 
 
A Boolean circuit with n inputs is a DAG with 
following properties:  
 
- It has n input vertices of in-degree 0, labeled 

nxxx ,......, 21  
 
- It has one output vertex of out-degree 0. 

 
- Every inner vertex is labeled with a Boolean 
function from the set [AND, OR, NOT].  A 
vertex labeled [NOT] has in-degree 1. 

 
- Every input can be assigned either 0 or 1. 

 
- The output is a Boolean function of nxxx ,......, 21 .   The circuit is said to compute this 
function. 

 
- The size of the circuit is the number of vertices in it. 
 
 
 
 
 



 
A randomized circuit is very similar to a 
Boolean circuit in terms of vertex properties, but 
in addition to n circuit inputs it also has several 
random inputs, labeled nrrr ,......, 21 . It computes 
a function of nxxx ,......, 21  if following 
conditions hold: 
 
- For all nxxx ,......, 21  with 0),....,( 1 =nxxf  the 
output of the circuit is 0, regardless of the values 
of random inputs. 
- If 1),....,( 1 =nxxf , the output is 1 with a 

probability
2
1≥p .  

 
Now consider a Boolean function }1,0{}1,0{: →∗f .   
Let nf denote the function f  restricted to inputs from n}1,0{ . A sequence ,..., 21 CCC =  is 
called a circuit family for f if nC has n  inputs and computes ),....,( 1 nn xxf  for all n-bit 
inputs ),......,( 21 nxxx . The family C  is polynomial-sized if the size of nC  is bounded by a 
polynomial in n  for n∀ . 
 
A randomized circuit family for f is a family of randomized circuits, which has m  
random inputs mrrr ,......, 21  in addition to inputs nxxx ,......, 21 , with mrrr ,......, 21  being 
either 0 or 1 with equal probability. The properties of the circuits concerning random 
inputs are those defined above.  
All m-tuples ),......,( 21 mrrr , for which 1),....,( 1 =nn xxf  for a particular n-tuple 

),......,( 21 nxxx , are referred to as “witnesses”  - they “testify” to the correct value of 
1),....,( 1 =nn xxf . 

 
We now introduce Adleman’s Theorem: 
 
If a Boolean function has a randomized, polynomial-sized circuit family, then it has a 
polynomial-sized circuit family. 
 
As a proof we provide a method that removes randomization from a randomized 
polynomial-sized circuit nC for ),....,,....,( 11 mnn rrxxf and transforms it into a deterministic 
polynomial-sized circuit nD that computes ),....,( 1 nn xxf : 
 
 
 
 
 



First, we construct a matrix M with n2 rows for each possible n-tuple from n}1,0{ and 
m2 columns for each possible random m-tuple from m}1,0{ . An entry ijM is 1 if the 

corresponding m-tuple is witness for ),....,( 1 nxx , and 0 otherwise. Next, we eliminate all 
rows for which f evaluates to 0, as there are no witnesses for such inputs.  
 

 
 

 
 
We start the construction of our circuit by finding a column in which at least half the 
entries are 1, that is, 1),....,,....,( 11 =mnn rrxxf for at least half the possible inputs 

),....,( 1 nxx .  
We then construct a circuit 1T as a copy of nC with random inputs “hard-wired” to the 
values of the selected m-tuple (note that such a circuit is purely deterministic!), and 
decimate the matrix by eliminating the selected column and all the rows that had 1’s in it. 

 
 
 
 
 
 
 
 
 
 
 



Now we proceed in a similar fashion by selecting another column etc., until there are no 
more rows left. As a result, we will have constructed at most n circuits nTTT ,...., 21 , which 
we then combine into the final deterministic Boolean circuit, whose size is )1( +n  times 
the size of the original randomized circuit. 
 

 
 
 
Our method is an example of a derandomization technique. Derandomization often 
proves useful in design of deterministic algorithms – sometimes it is easier to devise a 
randomized algorithm as a solution to some problem, and then derandomize it to arrive at 
a deterministic algorithm. Unfortunately, it is not always possible or feasible to remove 
randomization from polynomial-time computations, due to the issue of non-uniformity in 
algorithms. 
 
 
 
 
 
 
 
 
 
 



 
For further discussion we need to know what can be considered a non-uniform  
(or a uniform) algorithm: 
 
Let L denote a language over an alphabet ∑ * , and )(,: * nanINa →→∑  be a 
mapping from positive integers to strings in L .  An algorithm A  is said to use the advice 
a  if on an input of length n  it is given a string )(na  on a read-only tape.  
A  decides L with a  if on an input x  it uses )( xa  to decide Lx∈ . In other words, a 

single )(na  enables A  to decide whether or not Lx∈  for nxx =∀ , . 
 
A uniform algorithm is an algorithm that doesn’t use such advice strings at all.  
A non-uniform algorithm utilizes such advice strings. 
 
For the complexity class P  we define the class polyP /  as a class of all languages L  
that have a non-uniform polynomial-time algorithm A , such that length of all advice 
strings )(na  is polynomial-bounded in n , i.e. ))(()( npolyOna = . Likewise, we may 
define the class polyRP / . 
 
As an example, imagine a non-uniform algorithm A  that processes words 

},{ * nxx =∈∑ . Let )(na contain all },{ nxLx =∈ . L would be in polyP /  if the total 
number of words in L were bounded by )(npoly . 
 
Similarly, we may speak of a language L as having a randomized circuit family. Then, 

polyRPL /∈  if and only if it has a randomized polynomial-sized circuit family.  
Hence, one may interpret Adleman’s Theorem as a proof that  
 

polyPpolyRP // ⊆  
 

However, this only shows that removal of randomization can be done in principle. There 
exist no uniform or practical methods for achieving this.  
 

SUMMARY 
 
In this discussion, we have covered the topics of randomized game tree algorithms, 
Minimax Principle and Von Neumann’s Theorem, as well as Yao’s Techinques as 
powerful tools for bound estimation. We also presented a method for evaluating the 
lowest possible bound for a randomized algorithm, and addressed the issues of 
randomization removal and non-uniformity in algorithms.  
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