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1 Introduction

Quantifier elimination for the elementary formal theory of real numbers is a fascinating
area of research at the intersection of various field of mathematics and computer science,
such as mathematical logic, commutative algebra and algebraic geometry, computer
algebra, computational geometry and complexity theory. Originally the method of
quantifier elimination was invented (among others by Th. Skolem) in mathematical
logic as a technical tool for solving the decision problem for a formalized mathematical
theory. For the elementary formal theory of real numbers (or more accurately of real
closed fields) such a quantifier elimination procedure was established in the 1930’s by
A. Tarski, using an extension of Sturm’s theorem of the 1830’s for counting the number
of real zeros of a univariate polynomial in a given interval. Since then an abundance
of new decision and quantifier elimination methods for this theory with variations and
optimizations has been published with the aim both of establishing the theoretical
complexity of the problem and of finding methods that are of practical importance
(see the discussion and references in [Renegar] for a comparsion of these methods).
1 For subproblems such as elimination of quantifiers with respect to variables, that are

~ linearly or quadratically restricted, specialized methods have been developed with good
success (see [Weispfenning 1, Loos & Weispfenning, Hong 1)).

The theoretical worst-case complexity of the quantifier elimination problem for the reals
is by now well-established (see [Renegar]|); surprisingly the corresponding asymptotic
lower bound is already valid for the elimination of linear quantifiers (see [Weispfenning 1]).
Of course, this asymptotic complexity is established only up to multiplicative con-
stants. It has turned out that the size of these constants varies extremely for the
competing quantifier elimination methods, so that e. g. for practical use in problems
of small to moderate size, the procedure of Collins (with or without optimizations, see
"[Collins & Hong]) performs much better, than asymptotically better procedures (see
[Hong 2]). Moreover, the Collins’ procedure (and its optimizations) remain up to now
the only completely implemented quantifier elimination procedure for the full elemen-
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tary theory of reals. It has meanwhile become apparent that a wealth of problems e.g.
in geometry, algebra, analysis and robotics can be formulated as quantifier elimination
problems (see [Collins & Hong, Lazard]). Hence the search for practicable quantifier
elimination methods for the full elementary theory or fragments thereof is of great
importance.

The purpose of this note is to sketch a new quantifier elimination procedure for the
elementary theory of reals that differs from known ones among others by the fact that
it eliminates whole blocks of quantifiers instead of one quantifier at a time. By analogy
with the corresponding problem for algebraically closed fields (see [Weispfenning 2]),
this feature may yield a good performance in some practical examples. At present, it
is too early to estimate the performance; implementation has, however, begun at the
University of Passau.

The method is based on an exiting new method for counting the number of real joint
zeroes of multivariate polynomials with side conditions that was found recently in-
dependently by [Becker & Wormann] and by [Pedersen & Roy & Szpirglas), based on
ideas of Hermite-Sylvester. The method uses quadratic forms; it applies, however, only
to zeros of zero-dimensional ideals (i.e. polynomial systems that have only finitely
many complex zeros). It is this restriction that has to be overcome in order to apply
the method for a quantifier elimination; moreover, the method has to be extended uni-
formly in arbitrary real parameters. The clue to the solution of these two problems is
the use of comprehensive Grobner bases that have proved to be of great value already
for complex quantifier elimination.

In the following, I will first recall the basic facts concerning quantifier elimination, the
real zero counting using quadratic forms and comprehensive Grébner basis, and then
outline the mains steps that combine these techniques into a quantifier elimination
procedure.

2 Outline of the Method

2.1 The quantifier elimination problem for the elementary
theory of the reals

An atomic formula is an expression of the form f(X;,..., X,) p g(Xy,..., X,,), where
f,9 € Q[X),...,X,] and p is one of the relations =, <, <. Formulas are obtained from
atomic formulas by means of the propositional operators A, V, - and quantification
Jz;,Vz; over variables z;, together with appropriate use of parenthesis. The quantifier
elimination problem asks for an algorithm that on input of a formula ¢ outputs a
quantifier-free formula ¢’ (i.e. a propositional combination of atomic formulas) such
that ¢ and ¢' are equivalent in the ordered field R for real numbers (i.e. yield the
same truth value for any assignment of real numbers to unquantified variables).
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By a well-known and easy algorithm, any formula can be rewritten as an equivalent
prenex formula, i.e. a formula beginning with a string of quantifiers followed by a
quantifier-free formula. Any string 3z; ...3z; or Vz,...Vz; of similar quantifiers is
called a quantifier block. In order to solve the quantifier elimination problem, it suf-
fices by recursion on the number of quantifiers in a prenex formula to handle input
formulas of the form 3z(y), where ¢ is quantifier-free (notice that Vz(¢) is equivalent
to —3z(—¢)). In a similar but more efficient way, the quantifier elimination problem is
solved by recursion on the number of quantifier blocks provided one can handle input
formulas of the form 3z, ...3z.(¢), where ¢ is quantifier-free. Using the fact that ¢
can be put into disjunctive normal form and that disjunctions commute with existential
quantifiers, it suffices therefore to handle input formulas of the form

m '

(*)  3Fzy... 3z (A fi(zr, ..., za) = 0A 7\9;(:«51,...,9:,,) > 0)

=1 =1 ‘

with 1 <k <n, f;,0: € Q[z1,...,2zn)

2.2 Counting real zeros using quadratic forms

Let F be a finite subset of R = R[z,, ..., z,] such that the ideal I = Id(F) generated
by F is zero-dimensional (i.e. has only finitely many complex zeros). Then the residue
class ring R/I is finite-dimensional as R-vector-space and an explicit basis of R/
consisting of residue classes of terms in R can be computed from a Grébner basis G of
I (see [Becker & Weispfenning]). Let h € R; using the multiplication on R/I as linear
map one can define a symmetric matrix B, with real entries (see [Becker & Wormann]
or [Pedersen & Roy & Szpirglas]), such that the following holds: The signature of the
quadratic from given by B, (i.e. the difference between the number of positive and the
number of negative eigenvalues of By) equals the number of real zeros of I, where h is
positive, minus the number of real zeros of I, where h is negative.

Using the well-known technique of [Ben-Or & Kozen & Reif] this counting of real zeros
of I with one side-condition given by h can be extended to finitely many side conditions.

2.3 Comprehensive Grobner bases

For the basic facts on Grobner bases we refer to [Becker & Weispfenning]. Let R =
Q[Uy,...,Upm, Xy, ... X,] and fix a term-order < on the set T' of terms in X, .. 28 -
Let I = I(U, X) be an ideal in R and let G = G(U, X)) be a finite subset of I. Then G is
a comprehensive Grobner basis of I if for every m-tuple (ay, . . ., a,,) of elements in some
extension field K of Q, G(a, X) is a Grobner basis of I(a, X) in K[X] with respect to
the term-order <. For every finite F C R one can compute a comprehensive Grobner
basis G of I = Id(F). From G one can compute mutually exclusive quantifier-free
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' \isley formulas ¢y,...,¢, in U, ..., U,, whose disjunction is true, corresponding numbers

o dy,...,d, € {~1,...,n} and corresponding subsets Yy,..., Y, of {X,,..., X, } such
f’, {d . that in every extension field K of Q and all (ay,...,am) in K, if p;(a) holds true in
d; ?‘? K, then the ideal I(a, X) has dimension d; and ); is a maximal set of independent
SE variables modulo I(a, X)) (see [Weispfenning 2]).

+

2.4 Steps of the quantifier elimination method

By 2.1, it suffices to consider input formulas of the form (x) as in 2.1.

If m = 0, i.e. no equations are present, we may by a finite case distinction and by
recursion on k adjoin equations of the type gf—, =0, where g = [I™, g;.

K m > 0, we regard 2,44, . . ., 2, as parameters, and compute a comprehensive Grobner
bais of I = Id(fi,...,fn) with respect to the main variables Zy,...,Z; and the
quantifier-free formulas ¢;(z441,...,2,) together with d; and Y C {z1,...,2x} as
described in 2.3

The indices i, for which d; = —1 can be discarded.

For the indices ¢, for which d; = 0, the computation of a number r of real zeros of
fi,--., fm for which g¢,,..., g, are positive yields quantifier-free formula v, on the
parameters which is necessary and sufficient (under the hypothesis ¢;) for this number
r to be correct. Thus under the hypothesis ¢;, the quantifier-free equivalent to the given
input formula is V,.q %, (where r is bounded by the dimension of the corresponding
residue class ring), in case m' = 1 and g; = 1. For the general case one employs the
method of [Ben-Or & Kozen & Reif].

The indices i, for which d; > 0, require additional effort: Here one adds the variables in
i Yi to the parameters, recomputes a comprehensive Grobner basis for this new situation
| and proceeds as before. This time the additional variables from ) in the output formula
have to be existentially quantified and the whole procedure has to be repeated with
this new input formula. Termination of this recursion is guaranteed since the number
of main variables decreases in each recursive step.

3 Concluding Remarks

The algorithm sketched above is obviously in a first, very preliminary state that has to
be optimized significantly for implementation. Its weak point is the possible recursion
occuring for some input formulas, in case the dimension of the ideal to be considered
is greater than zero in the quantified variables. There are, however, many interest-
ing input formulas for which this situation will not occur, among them well-known
benchmark examples, if formulated appropriately (comp. [Collins & Hong, Lazard].
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