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ABSTRACT

Within the last few years several approaches to automated geometry theorem proving
have been developed and proposed that are based 1) on the formulation of a geometric
statement as the implication of a polynomial equation (the “conclusion”) from a set of
polynomial equations (the “hyptheses”), and 2) the proof of the implication by algebraic
methods, namely Grobner bases and Ritt’s bases. All these approaches require the in-
troduction of coordinates for the points involved. Many geometric theorems, however,
can be formulated as relations between points directly, without needing coordinates. We
present a new method, based on Grobner bases in vector spaces, that can prove geome-
tric theorems that are formulated as relations between points directly. Our approach has
the advantages that theorems can be formulated more naturally and fewer variables are
needed for their formulations. This results in shorter and faster proofs.

For this approach to geometry theorem proving it is essential to formulate theorems
as relations between points without introducing coordinates. It will be a major topic
in this presentation which relations can be formulated and how the formulation can be
done best. This envolves considerations of the underlying geometric statements and point
configurations.

With our approach to geometry theorem proving it is possible to prove geometric
theorems that can be formulated without explicitely introducing coordinates. The method
is based on the concept of reduction rings and Grébner bases computations of modules
in rings (Rlay,...,an))%W,..., V4], where Vi,...,V, stand for points and a,...,an
are variables for scalars that may be needed to formulate the theorem. A vector space
R? can be embedded into a module over the ring R with componentwise addition and
multipliation. So Grobner bases of modules in rings (R[as,...,an])*[V1,..., Vo] can be
regarded as Grobner bases of the respective subsets of the vector space.

Geometry theorems are often described in the following manner: First one has a
certain number of points that are arbitrarily positioned in space. Between these points no
relations hold; they are “independent” from each other. Starting from these points, other
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points are defined that are set into relations with each other, originally given or already
constructed points. These points are “dependent” from other points. For setting points
into relations to each other, certain geometric predicates are used. A few predicates suffice
to elegantly formulate various geometric theorems in Euclidean geometry. However, not
all geometric relations between points can be formulated without explicitely specifying
coordinates for the points. The most important relations that can be formulated on
points directly, i.e. within the vector space, are the following:

P is on the line through A and B iff for some a
A+a(B-A)-P=0
P is the center of the line segment AB iff
S(A+B)-P=0
P divides the line segment AB in the ration a to b iff
a(P-A)+b(P-B)=0
P is on the plane through points A4, B, and C iff for some a, b
A+a(B-A)+b(C-A)-P=0

In addition to the variables for the points itself, variables for scalars are needed. We
restrict here our considerations to relations that can be written as polynomial equations
in the variables for points and additional variables for scalars, but do not need explicit
variables for coordinates of points, although one might think of a combination in which
for some of the points variables for the coordinates are introduced.

Depending on the context, scalar variables may be bound by “for all” (for example, if
one wants to show something for all points on a certain line) or may be bound by “there
exists” (for example, if one describes a point on the intersection of two lines). From a
logical point of view, geometric theorems are described by formulae of the following type:

(YV1,...,Va)(Vay,...,a.)(3act1, . .., am) :
(h1(@1y- . y@m,Vay..., Vi) =0
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=
c(al,...,am,Vl,...,Vn) =0)
where V},...,V, denote points, ay,...,a,, denote scalars, and h,,...,A;,c denote po-
lynomials in a,...,a,, | 27O 7 Translating the informal description of a geometric

theorem directly, one gets these existential quantifiers for some of the scalar variables. Ho-
wever, the variables that are bound by the existential quantifiers are specified (uniquely)

-by the hypotheses; i.e. actually the theorem holds for all possible solutions of the hypo-

theses set of equations for the variables Get1y...,0y. This means that one can change
the existential quantifiers into universal quantifiers without changing the statement. So
we can equally well consider theorems of the form

(V"1,..., Vo) (Va,,.. ey lm) :

(Mm(ay,...,am,V,..., V) =0

hi(ay. .., am, Vay..., Vi) = 0
=
c(al,”"am"/l,--wvn) = 0)

if we keep in mind that there is a distinction between the scalar variables.

For proving statements of this nature it suffices (although it is not necessary) to
show ¢ can be written as ¢ = 2 i Sivih;, where s; € Rlay,...,an), v; € MW,... V],
M = {(a,...,a)|la € R}. (We also say that ¢ is in the module generated by hA;,...,hA.)

Grobner bases in “vector spaces” are an appropriate tool for proofing memberships
in such modules.
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