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ABSTRACT

Nowadays Discrete Geometry means two different things.

For the Mathematician it is the study of Packings and Coverings,

(cf. Rogers —Packing and Covering— Cambridge University Text, 1964, and
Conway-Sloane —Sphere Packings, Lattices and Groups— Springer, 1988).
For the Computer Scientist, it is the gathering of properties of usual
euclidean discretizations: lines, circles, spheres... This shows the
need for a Geometry of discrete structures, such as Z" lattices f or
example, in order to solve problems encountered with today’s numerous
digitalization devices, (cf Rosenfeld-Kak —-Digital Image Processing—
Academic Press 1982, Chassery-Montanvert —Géométrie Discréte en Analyse
d’Images— Hermés 1991). This theory seems also much wanted in other
fields such as Solid State Physics or Cristallography.

If there is no foundational problem in the domain described by the
Mathematician, that is not the case for Computer Scientist’s one. This
is exactly the subject this paper 1is concerned with: to give
Mathematical Foundations of a Geometry on Z" lattices.

In this lecture we restrict ourselves to the first non-trivial
case of dimension n=2.

We will explain how this theory comes from the fact that we
require it to satisfy the five following conditions:

It is the Geometry of a discrete group: Sl(2,2),

its Algor‘ithmi?s is as simple as possible,

its application is universal,

it has a Computational counterpart,

Euclidean Geometry can be recovered "in the large".

We will study these five points in turn.
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1 S1(2,Z)’s part in Discrete Geometry.

We begin by introducing the following notion of discrete line:

DEFINITION. - A discrete rational line D is the set of
integer solutions (x,y) of inequalities

¥ = ax+by < y+T,
where a, b, ¥, T are integers and T >0; we denote it
by D(a,b,7,t).

Here (a,b) is D’s normal vector, values y and y+t are D’s bounds

and positive integer T is D’s arithmetical thickness.

We will show that these lines possess interesting symetries and
can be classified with respect to two kinds of transformations: plane
integer translations and action of the SI1(2,Z) group. The results are
two main structure theorems which give, from a theoretical point of
view, a "Kleinian" interpretation of this bidimensional Discrete

Geometry.

2 Discrete Geometry’s algorithmics.

Our approach offers a nice "abstract" point of view for treating
Computer Scientists’ everyday problems; this formalism is not akward at
all. On the contrary it is of great help when designing algorithms
concerning not only discrete lines, plane discrete transforms, but also
several other questions as antialiassing, Moiré patterns, pattern
analysis, quasi-crystals, fractals...

This part is mainly devoted to arithmetics and algorithmics of
lines. More precisely we will show how modular sequences, Euclidean
algorithm and continued fractions come interact to form a very
interesting algorithmical domain concerning discrete lines. We also
remind the reader that these questions come from very old concerns

dating from Jean Bernoulli and E.C. Christoffel.

3 Universality of Discrete Geometry.
By universality we mean that a very great number of practical
applications can be made by using a small number of abstract

principles.
In Discrete Geometry, information is simultaneously geometrical

and arithmetical. This coexistence sometimes creates much more subtle
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networks than we are accustomed to with Euclidean Geometry. Thus
discrete notions interactions are completely different from euclidean
ones. Several examples of this important fact are given.

Particularly the main part played in Discrete Geometry by lines’
arithmetical thickness and intersection is explained and illustrated
with the help of Discrete affine transforms, Moiré patterns, and
Quasi-crystal structures.

The simple notion of discrete lines thickness is shown to have a
far reaching usefulness. .For example it allows bending and stretching
of lines to directly control discrete metrical properties.

The intersection of discrete lines, which amounts to solve the
following system of 4 diophantine inequations:

ax+by <y+w

<
1A

1A

n= cx+dy <n+p
also plays, in Discrete Geometry, a most important part.

Except in seldom cases, the problem of describing the integer
points contained in two strips, has nothing to do with obtaining the
integer part of the intersection point of two real lines.” This is also
a very old problem already studied, long before computer’s birth, by
Mac-Mahon, Farkas, Van der Corput... but with very different concerns.

In the discrete case, intersections may be void or may also
contain an infinite number of points, (parallel and overlapping, though
distinct, discrete lines exist); they also may be non-connected (in the
sense of 4 or 8-connectivity).

We have two ways of solving this problem. The first one uses
SI(2,Z)’s structure and reduces the problem to a walk through a
discrete segment. This result shows that intersection’s complexity does
not increase too quickly and remains equivalent to real lines case. A
second approach, using lattices, will be briefly sketched.

Noting that our method recalls particular techniques of Numerical
Matrix Analysis, we will present the new notion of Quasi Affine
Transform (QATs for short), a diophantine analogue of linear affine
transforms, aqd compare structures of both objects. These QATs possess
dynamics which behave between two extreme situations: from "real-like"
case, (one fixed point), to permutation (only cycles).

We can give an arithmetical characterization of the "real-like"
case. We also give some of the QAT’s general properties (cycles,
leaves, points’ inverse image, linear  bidimensional reciprocity

formula...) and applications (plane affine discrete transforms,

~
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antialiassing, fractals...).

This rather lengthy part ends with the fondamental inverse problem
of recognizing discrete lines. The characterization we obtained is used
to give a linear and very simple algorithm for decomposing a discrete

curve into discrete line segments.

-4 An Analytical approach of Discrete Geometry.

It is well know that Euclidean Geometry is equivalent to
Analytical Geometry; in this part we tackle the difficult question of
Discrete Geometry’s Analytical counterpart. The answer to this question
still remains unclear; we explain what this Discrete Analytical
Geometry should be: a Calculus about the Integer Part Function already
wanted by F. Gauss.

Though we do not have yet a general answer, numerous, scarce, but
related, elements are explained:

Linear reciprocity, parametrizations, quadratic reciprocity,
Ramanujan’s lattice problem, Smith normal form for integer matrices,

Jacobi’s Theta series...

5 How to recover Euclidean Geometry from Discrete Geometry.

In this last part an Ideal Discrete Geometry, infinitely close to
the Euclidean Geometry, is built and connected to the Discrete Geometry
Jjust presented. A simple explanation of this construction requires the
most elementary notion of Non-Standard-Analysis: non-standard integers.
We use it to introduce a theoretical non-standard discrete screen
(infinitely large) and show that its Geometry is a lifting of Euclidean
Geometry which can axiomatically be treated. Moreover this theory,
which can be connected to the Discrete Geometry studied in the
preceeding parts, can be considered as its limit "in the large".

This is what we mean by a unified Mathematical treatment of

Discrete Geometry.
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