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1 Introduction

Given a set of n d-dimensional (possibly intersecting) isothetic hyperrectangles, we consider the
problem of separating these rectangles by means of a cutting isothetic hyperplane. If the cutting
plane crosses a rectangle, this is cut into two non-overlapping hyperrectangles. We present
optimal algorithms for computing several kinds of balanced cuts in O(dn) time and space.
Thereby, the balance function can be defined in different ways, leading also to different optimal
partitions. We mainly consider two important balancing strategies and linear combinations.
First, the balance of a partition is defined to be the maximum number of hyperrectangles on
either side of the cutting hyperplane after the split. We call the corresponding optimal cut the
so-called best balanced cut. In opposite to that, the second cutting objective is to minimize the
size of partjtions, i.e the total number of rectangles in the two subspaces, while preserving the
balance of partitions, thereby minimizing the number of intersected rectangles. We call this
simply an optimal cut. Our results include a generalization of recent results by [AmFr 92a] and
[AmRoWi 93].

A solution to this problem has a number of applications, e.g., in the context of binary
space partitions, partition trees, computer graphics and solid modeling, VLSI design, computer
cartography and GIS, as well as geometric divide-and-conquer algorithms in many variations
(see, e.g., [Be 75, Gu 84, NiHiSe 84, PaYa 89, Sa 90, PaYa 91, AmFr 92b, AmRoWi 93)).

In [AmFr 92a], it was shown that there always exists a cutting hyperplane separating the
set S of n d-dimensional non-overlapping isothetic hyperrectangles into two sets each containing
at most [ "";—Zln] hyperrectangles. Later, this result was extended to the more general case
of overlapping rectangles by [AmRoWi 93]. It was shown that there always exists a cutting
plane which creates two halfspaces with at most a = [ 2‘é—;l(n — k)] + k rectangles on each side,
where k is the maximal number of rectangles in § that have a common point. (We call this
k-overlapping). Here, the problem appears to be that the upper bound approaches n in the limit
as d increases, thus becoming an overestimated upper bound (in general; not in the worst-case).

The answer whether there is a better bound in other cases than the worst-case is still open.

A closer look at the problem shows that we can improve the previously established results
to obtain a tighter upper bound by using a different measure than the overlapping factor k. We
prove that there always exists a cutting plane which creates two halfspaces with at most [_"—%"—J
rectangles on each side, where k* is the “profile” of the given set S of rectangles. All proofs in
this extended abstract are omitted.
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2 Preliminaries

At the beginning, we are given a set § := {Ri,...,Rn} of n (possibly overlapping) isothetic
hyperrectangles!
R; := [ai1,bi] X ... X [aig, bid]

in d-dimensional real space IR%. Any isothetic hyperplane C (which can be regarded as some
degenerate isothetic rectangle) separates R¢ into two closed half-spaces. Any rectangle R inter-
sected by C is split into two non-overlapping parts corresponding to the respective sides of C,ie.
for any c € ]ai, bi[, the hyperplane z; = ¢ splits the rectangle R = [a1,b1] X ... X [aq, bg) into two
parts: Rjow := [01, bl x...x[ai,c] X...x[ad,bd] and Rpigh := [a1,b1] % ... x[e,bi] x... X (aq, ba)-
So, any isothetic hyperplane C induces a partition of S in the sense that some rectangles lie
entirely on some side of the hyperplane while others are intersected. Let C<, C> denote the
sets of rectangles lying entirely in the two halfspaces generated by the cut C and C= the set of
_rectangles intersected by C. Now, it is desirable to obtain a cutting plane such that

(i) the number of rectangles after the split is as small as possible, or equivalently, the number
of intersected rectangles is minimized and

(ii) the difference of the number of rectangles on each side of the cutting plane is minimized.

Formally, we define the best sum cut as a cut minimizing the following sum:
Tc =|C<|+|C%| +2+|C7]

where |C| denotes the cardinality of the set C. Note that, since for an arbitrary cut C we have
|IC<| +|C”| + |C=| = n, minimizing T¢ is equivalent to minimizing |C=|.

In opposite to that, a (best) balanced cut is defined to be a cut which minimizes the difference
between C< and C?, i.e.
Ac =[lICc<|-1C1

Thereby, ||z|| denotes the absolute value of z. In an arbitrary situation, where the end points of
rectangles may coincide, these two conditions together will not always be satisfied simultaneously.
So, we propose a compromise, that is to look for an optimal cut C which minimizes the weighted
sum: aXc + BAc for real positive parameters a and B. We shall discuss this optimal cut in
more detail in Section 4.

The following definition is crucial. Let C; be an arbitrary isothetic plane along the j-th
coordinate direction. We denote by k7 the maximum number of rectangles intersected by any
such cut Cj, i.e. k] = maxc, |C7| and k* the minimum over all k}, i.e. k™ = min{k},...k}}.
The set of all endpoints of intervals forming the projections of the rectangles in S onto the j-th
coordinate axis? create a set of strictly increasing coordinates {z1,...,Zm} Where 1 < m < 2n
and Vi,j, zi,T; € {al,...,a,,,bl,...,bn} and i < j = z; < zj. We abbreviate this set by
{z;}7. Using the same notations as in [AmRoWi 93], we define two functions left(z) = |C<|
and right(z) = |C?|, where C is a cut at coordinate x. Note that our approach is more general
than that of [AmFr 92a, AmRoWi 93).

1For the sake of simplicity, we often refer to hyperrectangles (hyper-planes) simply as rectangles (planes
respectively), implicitely assuming that we always talk about scenes in d-dimensional real space, except when it
is explicitly stated otherwise.

2[5 the following, we consider all coordinate directions separately.
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3 The Best Balanced Cut

Lemma 1 Given a set § of n possibly overlapping segments on a real line with possibly
coinciding end points. Then, we can always find an interval (my,mg) such
that any cut C at z € (my,m;) satisfies either Ac < =3+ or Ac < e
where e, and e, are the numbers of coincident segment endpoints at my
and my, respectively.

This lemma justifies again our reasoning above that in case of disjoint endpoints, there always
exists a sub-interval with left(z) = right(z). Indeed, in this case we have e, = 1. This implies
left(z) — right(z) < 1 or equivalently left(z) — right(z) = 0. Our first theorem now provides
an upper bound for the best balanced cut.

Theorem 1  Given a set of n possibly overlapping isothetic rectangles in d-dimensional
real space, there always exists a cutting plane which creates two halfspaces
with at most a* = | 2£E" | rectangles on each side.

The following lemma relates the k-overlapping factor of a rectangular scene with the definition
of the “profile” k* of the scene.

Lemma 2 Given a set of n k-overlapping rectangles in d-dimensional real space, then
the following inequality holds:

pekrgdUntk
- d
Using this, we prove that the upper bound o is (in general) better than the upper bound a,
i.e. we have
a" <a

Indeed, it is easy to produce examples showing that in many cases a™ can be considerably smaller
than a.

The proof of Theorem 1 gives rise to an O(d n) algorithm to compute the best balanced cut
C or, more precisely, an interval which contains all best balanced cuts. (Note that there may
be infinitely many cuts which satisfy the balance condition). Afterwards, what we have to do
now is to find a sub-interval I where A is minimal. Under the general position assumption, the
proof of theorem 1 implies that Ay = 0 and we obtain a very simple algorithm to compute the
best balanced cut in O(d n) time.

We now outline a lemma assuring the correctness of the algorithm. For this, we call [my, m)
the median interval of a set of n segments if m; and m; are the n-th and n+1-th elements of the
set of disjoint segment end points, respectively. With that, we obtain the following surprising
lemma.

Lemma 3 Given a set of n possibly overlapping segments on a real line, let [m1, mo]
be the median interval of this set. For any cut C at z € [m1, m2] and any
cut C' at z ¢ [my, my), we have Ac < Acr.

With that, we have the following straightforward algorithm to compute a best balanced cut. In




a first step, we compute for any dimension j the median interval [m;,1, mj2] of the projections
of the rectangles in S onto the j-th coordinate axis. Afterwards, we compute ¢, where C;
is a cut at some z; € [mj1,mj2]. Finally, we choose the best cut among those C;’s over all
dimensions j = 1,...,d, i.e. the one with minimum Z¢;.

Theorem 2  Given a set of n possibly overlapping isothetic rectangles in d-dimensional
real space, a best balanced cut can be computed in optimal O(dn) time
and space.

A more careful investigation of the problem suggests that the balanced cut is not always the
optimal one. In the following section we shall discuss this optimal cut in more detail.

4 The Optimal Cut

In this section, we consider the question of satisfying the balance and the minimal sum conditions,
as defined in Section 2, at the same time. Generally, such an absolutely optimal solution does
not exist. In other words, one can not always obtain an optimal cut Co such that for all other
cuts C, we have A¢c, < A¢ and Z¢, < Zc. But we can make a compromise between these two
conflicting conditions by considering a weighted sum of both balancing functions. Formally, we
define the optimal cut as the one minimizing the following weighted sum

L*=aX +BA

Thereby, @ and 8 denote real positive parameters. Their relation represents the priority we put
on the balance condition or the minimal sum condition. Particularly, @ < B implies that the
balance condition is more preferable and a > § means that a best sum cut has higher priority
than the best balance cut.

Actually, up to now we have considered the first of the above cases by trying to obtain a
cut which best satisfies the balance condition. In the following, we shall consider the cut which
minimizes £* and supports the minimal sum condition, i.e. with @ > 8. The idea is to minimize
min(|C<|,|C>]) while maintaining max(|C<|,|C>|) obtained by the balanced cut C. In effect,
this is equivalent to reducing |C=| as much as possible. ‘

Lemma 4 Given a set of n segments on a real line. Let (my, m2) be the median
interval and by (ar, resp.) the first right (left, resp.) end point on the left
(on the right, resp.) of (mq,m2). Then, the cut C at either b; or a, is
optimal. That is, for any cut C', not at b; nor at a,, we have

5 > Th

This provides an algorithm to compute the optimal cut. At first, for each dimension j, we
compute the median m of the median interval (mj,1,m;,2) of the set of endpoints of the intervals.
Afterwards, we find the nearest right end point b to the left of m and the nearest left end point
a, to the right of m. Then, we select the optimal cut C; from Cj, and C,,. Finally, we choose
the optimal cut C out of all C;’s. Note that if b; and a, coincide with m; and m; in the optimal
dimension, the balance cuts may be optimal too. The following theorem is now straightforward.

Theorem 3  Given a set of n possibly overlapping isothetic rectangles in d-dimensional
real space, an optimal cut can be found in O(dn) time and space.
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We can also determine the whole sub-interval of optimal cuts. After computing b; (a,, resp.),
we can find the nearest left end point a; (right end point b,, resp.) to the right of b; (to the left
of a,, resp.) but not beyond m; (m,, resp.). Of course, this is not necessary if already b; = m,
and a, = mz. One of the two sub-intervals [bi,a;] and [b,,a,], is then the optimal sub-interval.
It is obvious that the optimal cut also satisfies Theorem 1.

5 Conclusion and Generalizations

In fact, our approach can be generalized to more general classes of objects. In this case, our
algorithm and all investigations of the best achievable balance apply to the bounding bozes of
the objects, as well. All we have to demand to preserve our runtime and space bounds is that
the boundaries of the bounding boxes of the objects can be computed in O(d) time, each. In
contrast, in our general case, no corresponding results are known if we drop the restriction that
the cutting hyperplanes be isothetic.
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