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Let V be a set of n points in IR%. An edge is a closed line segment connecting two
points of V. Let E be a set of edges. Then G = (V, E) is a geometric graph if for every
edge ab € E, abNV = {a,b}. A geometric graph is called plane if for every two edges
ab # cd in E, either abNcd = 0 or abN cd is an endpoint of both edges.

The connected components of IR? minus all points in V and on edges of E are the
faces of G. If the edges in E are pairwise disjoint, then G is a matching and we have
only one unbounded face. If V is fixed and E is maximal such that no two edges cross,
then G is a geometric triangulation of the convex hull of V. Then, the bounded faces of
a triangulation are triangles. A triangulation of a geometric graph G = (V, E) is a plane
geometric graph G’ = (V, E’), where E C E’ and where G’ is a geometric triangulation.
The degree 6(v) of a point v of a graph is the number of incident edges. Let A(G) be the
maximum degree over all points in G = (V, E). _

The problem studied here is described as follows. Let G = (V, E) be a plane geometric
graph. The problem is to find a triangulation G’ of G that minimizes A(G’). Clearly, for
a triangulation of this form it is not allowed to add new points. The decision problem has
the following form:

Problem: Min-max degree triangulation

Given: A plane geometric graph G = (V, E) in IR? with finite point set V and edge set
E, and an integer k € IN.

Question: Is there a triangulation G’ of G with maximum degree A(G') < k ?

This problem was raised as an open problem by Herbert Edelsbrunner [4]. We note that
for any triangulation G’ of a plane geometric graph G = (V, E) with |V| > 5, A(G') > 4
holds and that for any integer n > 5 there exist triangulated graphs G’ = (V, E’) with
|[V| = n and A(G’) = 4. An application of our studied problem in numerical engineering
is given by Frey and Field [5].

The problem to find a triangulation G = (V,E) as a subset of a geometric graph
G = (V,E) with E C E is studied by Lloyd [9]. Using a reduction from 3-SAT he showed

*Research of the author was supported by the Deutsche Forschungsgemeinschaft and was done a visit
at the University of Illinois at Urbana-Champaign




that this triangulation problem is NP-complete. Given a plane geometric graph with
or without constraining edges, several optimal triangulation problems have been studied
(1, 2, 3]. Optimal means that the form of the triangles or the triangulations is optimized.
In contrast to polynomial algorithms in [1, 2, 3], we give the first negative result for an
optimal triangulation problem.

The NP-completeness of a similar problem to triangulate a planar graph while mini-
mizing the maximum degree has been proved by Kant and Bodlaender [7]. One difference
in [7] to our considered problem and to the studied triangulation problems in [1, 2, 3] is
that an embedding of the graph in the plane is not given in the problem instance. The
second important difference is that the constructed lines in the triangulation in (7] are not
straight lines. Our main result is the following.

Theorem. The min-max degree triangulation is NP-complete for k = 7.

Proof. By reduction from a restricted version of planar 3-SAT which is also N P-complete
(8]:

Problem: Restricted planar 3-SAT

Given: A formula ¢ with a set C of clauses over a set X of variables that satisfies the
following three conditions.

(i) Each clause contains at most three and at least two literals.

(ii) Each variable occurs in at most three and at least two clauses, where we count
z as well as 7 as an occurrence of z € X.

(ili) The undirected graph Gy is planar.

Question: Is ¢ satisfiable ?

Now we give an overview of the reduction. Given a planar graph Gy for a formula o
we compute in the first step of the reduction a rectilinear planar layout with horizontal
lines for vertices and vertical lines for edges. Then we grow the lines to rectangles of unit
height or width. An example of a planar graph, its rectilinear layout and its modified
layout is given in Figures 1 and 2.

In the second step we construct blocks that represent variables, complemented variables
and clauses. These are placed inside the corresponding horizontal rectangles. For each
variable z € X we generate a block that allows us to assign a truth value by choosing a
triangulation of the block. To get a complemented variable we use an inverter. For each
clause ¢ € C' we generate a block that can be triangulated with maximum degree seven or
less if and only if at least one of the corresponding literals has the truth value true. For
moving the information between a literal and a clause we use a sequence of squares.

We simplify the construction in the second step and give only a part of each block with
points of small degree. To understand the function of the block designs, we assume that
the used points in the blocks have a larger degree five or six. To get these degrees for the
points, we add in the last step of the reduction for each block some new points connected




to the old ones. Furthermore, the new points allow us to triangulate the regions between
the block designs with degree less than eight. «

The block designs for a connection, a variable, an inverter and a clause are given
in Figures 3, 5, 8 and 10. Some of choices for a triangulation of the block designs are
illustrated in Figures 4, 6, 7, 9 and 11. We omit the details in the last step to generate a
degree of five or six at the points in the block designs.

We have proved that the triangulation problem is N P-complete with maximum degree
seven. Using a more complicated construction it might be possible to improve this to
degree six. The complexity of the min-max degree problem without any constraining
edges remains open.

Another problem is to find a triangulation of a point set with minimizing the sum of the
edge distances. The complexity of this problem called the minimum length triangulation
problem is one of the remaining open problems of Garey and Johnson (6]. Surprisingly,
the triangulation problem considered in this paper is NP-complete, which gives hope that
some of the ideas will eventually lead to an NP-completeness proof for the minimum length
triangulation problem.

We thank Herbert Edelsbrunner for directing us to the min-max degree triangulation
problem and for improving the paper. Moreover, we thank all members of the research
group of Herbert Edelsbrunner in Urbana Champaign for helpful discussions.
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Figure 1: A planar graph and its rectilinear layout 1
Figure 2: The modified layout with rectangles ¢
Figure 4: Two ways to triangulate a path of square
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Figure 10: One construction for a clause with three literals Figure 11: Three of eight configurations for a clause of the first form
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