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Abstract. In this paper tight lower and upper bounds for the number of triangulations of a simple
polygon are obtained as a function of the number of reflex vertices it has, so relating these two shape
descriptors. Tight bounds for the size of the visibility graph of the polygon are obtained too, with the
same parameter. The former bounds are also studied from an asymptotical point of view.
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1. Introduction

The number of reflex vertices of a simple polygon is a shape complexity measure describing how
far it is from the convex paradigm of simplicity. This number is a poor descriptor when considered
alone, as pointed by Toussaint [9]: given any polygon, if we insert a new vertex R in some original
side P;P;4; and pull it an infinitesimal amount towards the interior of the polygon, the basic shape
will remain unchanged. In fact, only the visibility between P; and P;;; has been altered. But if
R enters progressively in the interior of the polygon, the visibility between many pairs of vertices
can disappear and R will become really significative.

The numbers of ways a polygon can be triangulated is again a shape descriptor. If the polygon
has many arms, and it is very twisted, the number of triangulations will be relatively low, and this

number will increase if there are important “convex bags”, because many internal diagonals are
then available.

An internal diagonal is a visibility trajectory, and could have been destroyed by a reflex vertex,
so it is reasonable to expect a relation between the two numbers precedently considerated. Let n
and k be the number of sides and reflex vertices of any polygon, respectively. Hertel and Mehlhorn
(6] described an algorithm for triangulating a simple polygon that performs better the fewer reflex
vertices it has (the running time is O(n + klog k)). This is natural because in an average case, as
we show in this paper, the fewer that number, the higher the number of possible triangulations.

The proof is based in decomposing the polygon in convex pieces, a subject widely studied,
but the main objective is usually to minimize the number of pieces. Chazelle and Dobkin (1] [2]
[3] obtained a running time upper bound O(n + k3) with Steiner points allowed. The algorithms
by Greene [5] and Keil [7] use only vertices from the original set and have a worst case complexity
O(n?k?) and O(k?nlogn), respectively. The survey [8] by Keil and Sack provides a panorama on
the subject. In our paper a fixed number of non overlapping convex parts is sought, perhaps not
covering all the polygon, but providing a joint size large enough for visibility purposes.

The size of the visibility graph of a polygon is naturally related to the number of reflex vertices
it has, because adjacencies correspond to sides and internal diagonals, so it is not surprising the
former decomposition provides bounds for that size too.

The paper is organized as follows. In Section 2 we establish the lemmae relating the number
of triangulations of a polygon with the joint size of the “convex bags” it has, and this size with
the number of reflex vertices, the results being combined together in a final theorem. In Section
3 precedent lemmae are used in relation with the visibility graph. Finally, in Section 4 we study
from an asymptotical point of view the lower and upper bounds obtained for the number of
triangulations.
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All the polygons we consider being simple, the adjective will be omitted hereafter. The vertices
will be numbered counterclockwise with indices modulus the number of sides.

2. The number of triangulations of a polygon

Let t, and u, be the number of triangulations of a convex n-polygon and the nth number of
Catalan, respectively. It is a well known fact (see for example [4] ) that these sequences are the
same up to a shift of two positions: more precisely

1 2n-4
tn=un-2=n—_1(n_2) (n23)

We will accept as a convention that a segment is a convex polygon with two sides and
to = up = 1.

Given a polygon P, we denote t(P) the number of triangulations of P. The following theorem
describes the general situation.

Theorem 1. Let P be a n-polygon. Then 1 < t(P) <t,, and these bounds are tight.

The presence of reflex vertices diminishes the internal visibility (at least between the vertices
adjacent to the concave one), like that some triangulations are lost with regard to the convex
model. But no necessarily the more concave vertices we have the less triangulations we can obtain.

The main theorem in this section provides tight bounds for the number of triangulations of
a polygon as a function of its reflex vertices. To establish that result we need some lemmae. We
use the Catalan numbers u,, for the purely combinatorial results, the rephrasing in terms of the ¢,
being identical.

Lemma 1. Let ay,...,am,w nonnegative integers with oy + -+ -+ am > w. Then

w2 (v121) (1)

where t is the residue of the division of w by m.

If a polygon P admits a collection of non-overlapping convex subpolygons, the product of
its corresponding numbers of triangulations is a lower bound for ¢(P), and this value will be the
lesser the more equilibrated the sizes of the “convex bags”. Next lemmae will provide us a certain
relation between the number of “bags” and its collective size.

Definitions. Let P be a polygon with vertices P,,...,P,—; and P; a concave vertex of P. We
say a triangle P, P; P; breaks the angle in P; when its interior is contained in P and neither of the
angles P, P;,P,, P,P;P;, P,P,P;_, is concave. An internal diagonal P; P, breaks the angle in P;
if the angles P;_,P;P; and P;P;P;4, are not concave. We use the term “to break” because we
intend to work with the resultant pieces. The central zone of P; is the part of the plane to the
right of the ray P;41P; and to the left of the ray P;_, F;.

The main strategy for the next results is as follows: to break the polygon in pieces by a diagonal
or a triangle, diminishing the total number of reflex vertices, and then iterating the process. This
can be done in such a way that we obtain the following result:

Lemma 2. Let P be a n-polygon with k reflex vertices. There are k + 1 convez polygons
Ci,...,Cky41 such that

a) Every vertez of C; is a vertez of P, i=1,...,k+1;
b) Sk |vertices(Ci)| > n+k;

t=1
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c) If i # j then C; N C; is empty, a common vertez or a common edge;
d) Points interior to C; are interiorto P, i=1,...,k+1.
Now we have all the ingredients for our main result:

Theorem 2. Let P be a n-polygon with k reflez vertices. Then

(re) () o050 (Do (B

where s is the residue of the division of n+ k by k + 1, and these bounds are tight.

The precedent results have some simple consequences that are worth noting:
Observation 1. The lower bound in Theorem 2 is 1 when 2 < 2t < 3 or, equivalently, k > 253,
So, if k < "T's then P admits at least two triangulations.

Observation 2. A n-polygon with k concave vertices admits always a convex f'ﬁ_;‘]-subpolygon,

and this value is tight. In other words, in order to guarantee a convex p-subpolygon we must have
n>kp+p—2k.

3. The size of the visibility graph

Let Gp = (Vp, Ep) be the visibility graph of a simple polygon P. Some results we have already
given can be translated in terms of the visibility graph. For example, Observation 2 say us that if

P has n sides and k reflex vertices then clique(Gp) > [",:—'ff], and the bound is tight. The size |Ep)|

of Gp is also naturally related to the number of reflex vertices it has, because internal diagonals
—adjacencies in Gp- can be destroyed. In this section we precise that relation.

Next theorem is the (trivial) statement for the general situation.
Theorem 3. Let P be a n-polygon and Gp = (Vp, Ep) its visibility graph. Then 2n—3 < |Ep| <
< (3), and these bounds are tight.

This bounds can be improved if we know the number of reflex vertices, by using the
decomposition obtained in the precedent section.

Lemma 3. Let ny,...,n,, be nonnegative integers. Then

() (3) 25 o)

where s 1s the residue of the division of 3 n; by m.

Theorem 4. Let P be a n-polygon with with k reflez vertices, and let Gp = (Vp, Ep) its visibility

graph. Then
k+s(|-”:—:";’%]) +(k+1—s)(l%J) <|Ep| < ('2') —k

where s is the residue of the division of n+ k by k + 1, and these bounds are tight.

4. Asymptotic analysis

We now proceed to compute asymptotic estimates for the bounds presented in Theorem 2. In
order to simplify matters, we will content ourselves with the following expressions for the lower
and upper bounds, which do not alter its asymptotic behaviour:

Li(n) = (uh_s.;")'c+l

Ur(n) = un — (f) Un_1 + (;) Un_z+ -+ (-1)F (:) Un—k
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Theorem 5. Let Li(n) and Ug(n) be as above. Then

Li(n) ~ p4™n=3*+D/2 for 4 certain constant p = p(k);
Uk(n) AL (%)kw-1/24nn—3/2‘

Thus the main asymptotic term 4" in L;(n) remains the same as in the convex case (k = 0)
but the degree of the polynomial in n has been decreased by 3k/2. The result for Ug(n) can be
rephrased in a simple way as

B 3y,

that is, every time we add a reflex vertex, the maximum number of triangulations of a polygon is
decreased (asymptotically) by a factor of 3/4.

Observation 3. As an additional remark, we note that if make the number of reflex vertices is
proportional to n, say k = n/a, then

Le(n) = ((ua)=)".

The sequence (ua)i‘ is increasing with limit equal to 4 (this follows from the fact that Ugt1/Ua =
=2 2(,—‘:_% has limit 4 as o goes to infinity). This means that we are always asympotatically under

the main term 4" coming from the convex case, but we approach this limit as the number of reflex

vertices becomes relatively scarce. As for the upper bound, similar considerations apply from its
asymptotic estimate.
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