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1 Introduction

Our aim is to present a new approach to Art-Gallery-type problems. The original Art
Gallery Problem raised by V. Klee asks how many guards are sufficient to watch the
interior of an n-sided simple polygon.In 197§ V. Chvatal gave the answer proving that
[n/3] guards are always sufficient and sometimes necessary. Since then many results
have been published studying variants of the problem or analyzing algorithmic aspects,
see [3],(4] for a detailed discussion. One of the main open questions in this field is the so
called Prison Yard Problem for simple rectilinear polygons (comp. [4]), i.e. we want to
determine the minimal number of vertex guards sufficient to watch simultaneously both
the interior and exterior of any n-sided simple rectilinear polygon. While the case of
general simple polygons has been completely settled by Fiiredi and Kleitman ([g—] guards
for convex and [%J guards for any non-convex simple polygon are sufficient, see [1]) in
the rectilinear case the situation is much worse since their methods seem not to extend as
mentioned in their paper and the only upper bound known is the rather trivial [%‘J +5-
bound (see [3]) which can be obtained by combining the | % |-result for the interior with
the [2] + 1 guards for the exterior of the polygon.

Below we present two asymptotically tight bounds for the classes of strictly monotone
resp. orthoconvex rectilinear polygons. Our main contribution however we see in the way
how to prove these bounds as upper bounds. It sheds some more light on the combinatorial
nature of the Prison Yard Problem as well as of some other solved and unsolved questions
in this field.

2 Lower Bounds

Figure 1 shows an example of a rectilinear polygon due to Dorward who claimed that
it required [%] guards, see [4]. Continuing, however, periodically the guarding positions
indicated in Fig.1one sees that f%‘-] +2 watchmen are sufficient. Moreover, looking at the
most simple possible periodic staircase (Fig.2) a straightforward combinatorial argument
shows that H—g] guards are necessary and (up to an additive constant) also sufficient as
indicated. We will show that this is an upper bound for all strictly monotone rectilinear
polygons.
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A pyramid is a rectilinear polygon that has a horizontal edge the length of which equals
the sum of the lengths of all other horizontal edges. Fig.3a shows a pyramid P, with a
guarding set of asymptotic size 5n/16 . We show that it also requires as many guards.
The length of the edges of Py, are chosen in such a way that to watch a quadrilateral inside
(Fig.3b) one has to choose one of its vertices as a guard position.

Proposition 1: [51—';] guards are necessary to watch Po.

Proof: We distinguish 3 types of guards, comp.Fig.3b. An a-guard pair watches
together 4 quadrilaterals, 2 typel-triangles, and 1 type2-triangle. We remark that we
can form these pairs since the guard watching 4 quadrilaterals must have at least one
”partner” on the other side watching the opposite triangle. - resp.y—guards are sitting
in concave (convex) corners and they are not part of a-pairs. They watch each 2 (resp.1)
quadrilateral, 0 (resp.l) typel-triangle, and 1(resp.1) type2-triangle. Since we have a
total of (n — 2)/2 quadrilaterals and (n — 2)/4 triangles of each type we conclude for any
guarding set consisting of ¢ = 2a + b + ¢ guards of a-, -, and y-type respectively that:
da+2b+c>(n-2)/2, 2a+c>(n-2)/4, a+b+c > (n—2)/4. But this implies
the lower bound.

3 Upper Bounds

Several upper bound proofs of art gallery problems are based on graph coloring arguments.
For example, any triangulation graph of a simple polygon is 3-colorable. Analogously,
the graph of any convex quadrilateralization of a simple rectilinear polygon with both
diagonals added to each quadrilateral is 4-colorable, see [2]. Then in both cases for any
color i the set of all vertices colored with i is sufficient to watch the whole interior of
the polygon, since any color dominates any triangle (resp. quadrilateral). Choosing a
color class of minimal size, one obtains the |3 |-bound for general polygons and the |3 |-
bound for rectilinear polygons. Unfortunately, this direct graph coloring approach fails
for polygons with holes as well as for the prison yard problem.

We start with a graph modelling the prison yard problem for orthoconvex rectilinear
polygons. Any such polygon P has 4 extremal edges (northmost, eastmost,...) ordered
cyclically (clockwise). Two successive extremal edges are either neighbours or connected
by a staircase. The polygon is strictly monotone if there are two disjoint pairs of neigh-
bouring extremal edges. We note that the exterior region of the polygon is covered by
the set of quadrants of all stairs and and four halfplanes defined by the extremal edges.

Definition: Let P be a quadrilateralized orthoconvex polygon then G(P) is a graph
with a vertex set consisting of all polygon corners and two vertices v and w are connected
by an egde if one of the following conditions hold:

e v and w are connected by an edge in the polygon P;
e v and w are connected by a chord of the quadrilateralization;
e v and w are convex corners defining together a stair of a staircase in P.

We say that a subset C of the vertex set dominates the graph G(P) if any quadrilat-
eral, any triangle, and any of the 4 extremal edges contains at least one vertex from C.
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Obviously, such a domimating set is sufficient to watch the interior and the exterior of
a polygon. Our approach is based on the following idea: Using k different colors we are
allowed to label any vertex with a certain number of colored pebbles (this number may
depend on the vertex type). If we find a labelling (called k-labelling) such that any color
dominates the graph and which uses f(n) pebbles in total then there is a dominating set

of size lL&?—ZJ .

Theorem 2: I_:i—g J + 2 guards are always sufficient to solve the prison yard problem
for strictly monotone rectilinear polygons.

Proof: First we remark that for a strictly monotone polygon the dual graph of the
quadrilateralization graph is a path, any chord of the quadrilateralization connects a
convex with a concave vertex and any quadrilateral has a diagonal connecting two convex
vertices (called convex diagonal). There is a greedy algorithm which following the path
of the dual graph constructs a 5-labelling of G(P) with the following properties:

o each convex (resp. concave) vertex is labelled by 2 (resp.1) pebbles;
o each triangle and each quadrilateral contains all 5 colors;

o each convex diagonal contains exactly 3 colors, i.e. there is one common color on
both sides of the diagonal.

We omit a formal proof and refer to Fig 4. Using 4 more pebbles we can make sure that

all extremal edges are also dominated. In total we use 2%4 + "T"‘ +4= 3"—-'{12 pebbles.

Applying a similar (but more complicated) algorithm we get 8-labellings of pyramids
using 5n + 20 pebbles. Decomposing a orthoconvex polygon into at most 2 pyramids and
one strictly monotone polygon we get the following result.

Theorem 3: [-51—'5-] + 2 guards are always sufficient to solve the prison yard problem
for orthoconvex rectilinear polygons. ’
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