Incremental Generation of Voronoi Diagrams of
Planar Shapes

Martin Held*

1 Introduction

Consider a planar, bounded, and closed area 4 which is simply-connected, and suppose that its
boundary C consists of n straight lines and circular arcs. For every point p € A, the (contour)
clearance d(p, C) is defined as the minimum Euclidean distance d(p,q), where g is on the boundary
C. The clearance disk is the disk with radius d(p,C) centered at p. The internal skeleton with
respect to C and A is the set of points out of the interior of A whose clearance disks touch C in at
least two disjoint points. From this structure the Voronos diagram VD(C) of C is derived by adding
straight line segments at the reflex vertices of C (normal to the incident boundary segments).

In the following we describe a fast incremental algorithm for computing the Voronoi diagram
of a Jordan curve C consisting of straight lines and circular arcs. For a detailed survey of the
algorithm and its analysis we refer to [Hel93]. The algorithm’s underlying incremental construction
scheme was first sketched by Persson [Per78]. :

The algorithm requires only O(n) arithmetic floating-point operations for the generation of
Voronoi diagrams of the boundaries of so-called monotonous areas, which are a generalization
of convex areas; in addition to up to O(nlogh) computationally less expensive comparisons and
assignments of floating-point values spent on maintaining a priority queue of size h < n. For general
shapes these worst-case complexities have to be multiplied by a shape-dependent factor, which is
small in all except perhaps very few practically relevant applications. Practical tests gave clear
evidence that this incremental algorithm usually is significantly faster than Lee’s divide&conquer
algorithm [Lee82].

2 Incremental Algorithm

2.1 Outline of the Algorithm

In the first step of the algorithm a bisector b(s1,33) between every pair of consecutive contour
segments (s, 33) is computed. We call these bisectors contour bisectors because they originate at the
boundary contour, cf. Fig. 1. Secondly, for every triple (sy, 53, 83) of consecutive contour segments,
the corresponding contour bisectors b(s1,33) and b(s3,s3) are intersected. If an intersection exists
then both bisectors are terminated at the point of intersection and the intersection is associated

with both bisectors.

Figure 1: Confour Bisectors. Figure 2: Candidate Intersections.

In the third step, a subset of all intersections is selected as possible candidates for the subse-
quent incremental merging. An intersection between two bisectors is a suitable candidate if and only
if no other intersection with a smaller contour clearance is associated with any of the two bisectors.

*Universitat Salsburg, Institut fir Computerwissenschaften, A-5020 Salsburg, Austria.

70



All candidates are stored in a priority queue whose elements are ordered according to increasing
clearance; i.e., the front end of the queue represents the intersection with smallest clearance. In
Fig. 2, the candidate intersections are denoted by small bullets.

After the priority queue has been initialized the actual incremental construction starts. The
front element is deleted from the queue and the corresponding intersection is accepted as a valid
bisector intersection. Accepting a bisector intersection means that this point is used as a start
point for the next merge bisector to be computed. This new merge bisector is defined by those
contour segments defining the intersecting bisectors which do not define both of them; i.e., if the
intersection between b(s;, s;) and b(sj, 33) is accepted, then the new merge bisector is defined by
(81,83). Similarly to the divide&conquer algorithms, the new merge bisector b(s;, s3) is intersected
with the chains of bisectors incident in s; and s3. If one intersection exists then this intersection is
stored in the priority queue. If two intersections exist then the intersection encountered first when
moving away from the start point (along the merge bisector) is stored.

An intersection needs only be stored if the actual front end of the queue corresponds to an
intersection which has a smaller clearance than the new intersection. Otherwise, the new intersec-
tion can be accepted without any further manipulation of the queue. This subsequent accepting
and computing of intersections until an insert into the queue is inevitable is called a run. Fig. 3
depicts the actual status of the Voronoi diagram under construction after the end of the first run.

Figure 3: After :First Run. Figure 4: After Second Run.

Individual runs are carried out until the total Voronoi diagram is eventually constructed. In
our example, Fig. 4 and Fig. 5 depict the situations after the end of the second respectively third
run. Of course, at the start of a new run an intersection fetched from the priority queue may only
be accepted if it still constitutes a valid intersection. Otherwise, it can be discarded and the next
intersection has to be fetched from the priority queue. For instance, an intersection stored has
become invalid if one of its associated bisectors has been discarded or shortened by an intersection
with another bisector encountered during the construction process.

Figure 5: After Third Run. Figure 6: After Final Run.

In order to set up a termination condition it is sufficient to check the defining contour segments
intersected by the merge bisector: the construction process is finished if two coinciding intersections
exist and if the bisectors intersected by the merge bisector share a defining contour segment. Fig. 6
depicts the completed Voronoi diagram after the final run.

2.2 Voronoi Diagrams and the Concept of Monotonous Areas

The concept of monotonous areas was originally developed by the author a number of years ago
when dealing with the automatic generation of tool paths for pocket machining. Monotonous areas

71




play a key role in the analysis of the algorithm presented here. In order to make this paper self-
contained we therefore include a short review of monotonous areas. For a more detailed introduction
we refer to [Hel91].

As illustrated in Fig. 7, we call a simply-connected and bounded area a monotonous area if
its closed boundary contour can continuously and uniformly be shrunk to a point without splitting
the area into separate subareas. Convex areas are also monotonous, but monotonous areas need
not be convex-shaped - just think of a banana-shaped area. We call those points of a monotonous
area which have maximal clearance innermost points.

JATITA

Figure 7: Three Individual Monotonous Areas. Figure 8: Subdivision Into Monotonous Areas.

An arbitrary multiply-connected planar area .4 can be partitioned into its monotonous subareas
in time linear in the number n of its boundary segments, provided that the Voronoi diagram of its
boundary is available. Fig. 8 depicts a simply-connected area subdivided into three monotonous
areas; innermost points are depicted by bullets, straits between adjacent monotonous areas are
depicted by dashed lines.

2.3 Complexity Results

What is the worst-case complexity of this incremental scheme? Assume that all nodes of VD(C) are
of degree three and let us start with considering the boundary C of a2 monotonous area. It can be
proved for monotonous areas that no bisector intersection accepted during the incremental merge
process will be discarded by a latter merge step. In other words, any bisector ever constructed, or
at least a portion of it, is guaranteed to be part of the final Voronoi diagram.

As a consequence, it is not necessary to scan more than two bisectors — one on the left-hand side
and one on the right-hand side of the merge bisector — when looking for intersections: Suppose that
an intersection between the merge bisector and some bisector encountered after repeated scanning
would exist. The existence of an intersection would result in the discarding of at least one bisector
intersection accepted previously, which cannot happen according to the remark stated above.

If there are k bisectors in the final Voronoi diagram, only k bisectors have to be handled during
the entire construction process. Handling a bisector means accepting its start point, computing
it, and intersecting it with exactly two other bisectors, and in addition possibly storing a new
intersection point in the priority queue. Obviously, the arithmetic bisector operations can be
carried out in constant time.

As far as the complexity of the queue manipulations ~ deletion of the intersection to be accepted
and insertion of a new intersection - is concerned, one should observe that the size of the queue does
not increase during the merge process: for each accepted intersection at most one new intersection
is stored in the queue. As priority queues can be implemented as heaps, for instance, each queue
manipulation takes O(log k) time, where k denotes the number of intersections originally stored in
the queue during the initialization stage.

Hence, we conclude that our incremental algorithm computes all k bisectors of the Voronoi
diagram of a monotonous area in time O(k + rlog k), where r denotes the number of runs. In parti-
cular, only O(k) computationally expensive floating-point operations associated with the handling
of bisectors have to be executed. The number k ranges between n and 4n — 3. Since r < k and
h < |n/3], we get an overall worst-case complexity of O(nlogn).

What about the complexity of applying the incremental algorithm to a general simply-connected
area A? First of all, one should observe that in the case of general areas it is no longer valid that

72



no accepted bisector intersections will ever be discarded during subsequent runs. Rather, as in the
case of the divide&conquer algorithm the entire Lee/Drysdale scanning scheme - cf. [Lee82, Hel91]
- has to be applied when looking for intersections in order avoid a re-scanning of bisectors; repeated
scanning of bisectors may clearly result in a quadratic complexity even in the case of simply-shaped
areas.

Now suppose that, for all monotonous areas 4 of A, m is an upper bound on the number of
monotonous areas adjacent to A. In other words, if the monotonous areas are regarded as nodes
of a graph which are interconnected by edges if and only if they share common straits, then m
is the degree of this graph. It is proved in [Hel93] that the incremental algorithm takes less than
O(mnlogh) time in the worst case, thereby computing at most O(mn) bisectors and performing
at most O(mn) floating-point operations.

As a matter of fact, m can go up to n. However, according to our own experience, the worst
case m = O(n) will occur very rarely in practical applications. Furthermore, there exists another
fact which makes the case of O(mn) bisectors being generated most unlikely: This worst-case upper
bound can only be attained, if at all, in case that the clearance distances of the innermost points
of all m monotonous areas adjacent to the area A are greater than the clearance distance of the
innermost point of A. Otherwise, the number of adjacent areas which have innermost points with
smaller clearance can be subtracted from m. Usually, m is much smaller than n, and it does not
increase when n is increased as long as the shape of the area under consideration is preserved.

Up to now we unfortunatetly did not succeed in carrying out a full-scale average-case analysis.
However, the term O(nlogh log m) serves as a very rough upper bound on the average-case comple-
xity, with at most O(nlog m) bisectors being constructed and with at most O(n log m) floating-point
operations being performed. As witnessed by our practical tests this bound still seems to be too
crude for most practical applications.

3 Concluding Remarks

The incremental algorithm presented and a version of Lee’s [Lee82] divide&conquer algorithm,
cf. [Hel91], have been implemented and extensively tested. During our work on pocket machining
Lee’s divide&conquer algorithm formed the algorithmic basis for the generation of offset curves.
Except for the procedure governing the overall strategy of the algorithms — either divide&conquer
or incremental - both algorithms rely on the same code for performing the rest of their tasks.

Our tests clearly demonstrated that the incremental algorithm usually is much faster than
Lee’s divide&conquer algorithm, with savings of CPU-time reaching up to about 60 percent. In
particular, for the incremental algorithm the ratio between n and the CPU-time consumed remains
roughly constant when increasing n. This is a clear indication that a roughly linear growth of the
CPU-consumption can be expected for practical applications of the incremental algorithm! The
CPU-consumption of the divide&conquer algorithm, however, usually shows a non-linear growth.

Apart from its practical advantages this algorithm is also interesting from a theoretical point of
view: we suspect that it is amendable for a generalization to 3D, which may clear the road towards
the efficient generation of Voronoi diagrams of polyhedrons.

References

[Hel91] M. Held. On the Computational Geometry of Pocket Machining, volume 500 of Lecture
Notes in Computer Science. Springer-Verlag, June 1991. ISBN 3-540-54103-9.

[Hel93] M. Held. Incremental Computation of Voronoi Diagrams of Planar Shapes. Technical
Report CS-93-1.0, U. Salzburg, CS Dept., A-5020 Salzburg, Austria, Jan 1993.

[Lee82] D.T. Lee. Medial Axis Transformation of a Planar Shape. IEEE Trans. Pattern Analysis
and Machine Intelligence, PAMI-4(4):363-369, 1982.

[Per78] H. Persson. NC Machining of Arbitrarily Shaped Pockets. Computer Aided Design,
10(3):169-174, May 1978.

73



