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1 Introduction

We consider the two-dimensional all nearest neighbors problem (ANN problem) for a set of non-intersecting convex
objects with respect to arbitrary L!-metrics d, (1<t<oo): ‘

Given a set S of n non-intersecting compact convex objects in the plane, find a nearest neighbor of each

with respect to d,.
The Minkowski-distance d; of two objects s;,s55 € S is defined as follows:

d¢(s1,s2) = min{(Jp.z - g.z|' + lp.y — q.y[‘)"l :pESL,gEs:) 1<t< o
doo(s1,52) = min{max{lp.z — q.z|,|p.y — q.yl} : p € 51,9 € 55}

If S consists of n points Q(nlogn) is a well known tight lower bound for this problem in the algebraic decision
tree model of computation. Optimal algorithms for this simple version of the problem are given in [Sh 75], [Va 89],
[HNS 92]; a survey is given in [FKP 92]. However, all these algorithms do not apply to sets of more complex
objects, e.g. convex polygons.

[BH 92] presents a plane sweep algorithm to solve the closest pair problem for a set of convex planar objects with
respect to an arbitrary Minkowski-metric. This algorithm tests whether a new object encountered during the
left-to-right sweep forms a new closest pair with any of those objects seen so far. Among these objects only those
intersecting the é-slice to the left of the sweep line have to be considered, where § denotes the minimal object
distance found so far. A total ordering on these active objects is determined by their intersections with the é-slice.
During the sweep the algorithm maintains the set of active objects and the minimal distance § between any pair of
active objects which become neighbors with respect to this total ordering. New neighbor pairs are obtained either
by encountering a new object or by deactivating an object which does not intersect the é-slice any more. It seems
to be surprising that this algorithm finds the correct result by just testing pairs of active objects which become
neighbors during the sweep. [BH 92] proves that this is sufficient for both an intersection free configuration and a
configuration with intersecting objects, a more intuitive proof is given in [BGH 92].

The technique used in the above algorithm cannot be applied to the ANN problem for convex objects. Since we
search for a nearest neighbor of each object in our configuration, we do not have a global § for all objects but
an individual é for each object. This makes the technique used in [BH 92] unsuitable for the ANN problem since
the deactivation events do not occur in a predefined order and therefore have to be rearranged dynamically. Even
worse, the individual é-values emphasize the local nature of the problem, and therefore it is not necessarily true
that at any time during the left-to-right sweep or the right-to-left sweep an object and any of its nearest neighbors
become neighbors in the y-table, i.e. with respect to the total ordering in [BH 92].

Our algorithm PSANN (=Plane Sweep All Nearest Neighbors) uses four sweeps, from left to right, from right to
left, from top to bottom and from bottom to top. The algorithm also works correctly if we weaken the condition
of disjointness to the conditon that the objects in our configuration are diagonal disjoint, which means that for
any object the z-diagonal connecting certain z-extremal and the y-diagonal connecting certain y-extremal points
do not intersect any other object of S. For configurations consisting of n line segments, circular discs or convex
polygons whose number of edges is treated as a constant, PSANN runs in asymptotically optimal time O(nlogn).
Let S be a set of n convex polygons with a total of N edges. If each polygon is given by its vertices in cyclic order
then PSANN finds nearest neighbors with respect to the Euclidean metric in time O(nlog N). This runtime is
achieved by employing an optimal O(log m) algorithm [CD 87] for detecting whether two convex polygons with at
most m edges intersect, and an optimal O(log m) algorithm ([E 85], [CW 83]) for computing the minimal Euclidean
distance between two such non-intersecting convex polygons.
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2 Plane-sweep applied to the all nearest neighbors problem

Our algorithm PSANN is based on the well known plane-sweep method. Plane-sweep’s name is derived from the
image of sweeping the plane from left to right with a vertical line (front, or cross section), stopping at every
transition point (event) of a geometric configuration to update the cross section, i.e. to maintain the problem-
dependent sweep invariants which have to hold for the objects being encountered so far. All processing is done at
this moving front, without any backtracking, with a look-ahead of only one object.

The sweep invariants determine the events contained in the z-queue (event queue) and the status of the sweep which
is maintained by the y-table (sweep line structure). In the slice between two events the properties of the geometric
configuration detected so far do not change, and therefore no invariant has to be maintained and the y-table does
not have to be updated. The skeleton of a plane-sweep algorithm is as follows: The procedure ‘transition’ is the

initialize x-queue;
initialize y-table;
while not empty(x-queue) do
{ e := next(x-queue); transition(e)}

advancing mechanism of the plane-sweep. It embodies all the work to be done when a new event is encountered;
it moves the front from the slice to the left of an event e to the slice immediately to the right of e.

In this paper we apply the plane-sweep principle to solve the all nearest neighbors problem in a set S consisting of
n convex compact objects with respect to any L*-metric d; (1 £t < 00). For each object s € S let s[L] denote the
smallest and s[R] the largest point in s according to the lexicographic order ‘<*’:

VP.g€ % p<T qie= (pr < q.z) V [(p.z = g.2) A (py < q)].

Throughout this paper we write p <; ¢ and p <y q instead of p.z < ¢.z and p.y < ¢.y, respectively. These notations
are extended to point sets as follows

P<:Q: <= VpePVgeQ:p<.q

For a point p € E? the two diagonal lines (with slopes +1) through p subdivide the plane into four quadrants. Let
us denote these quadrants as follows:

QR(p):={¢>:p: Ip.z—q.z| > |p.y — q.9)}
QL(p) :={g <z p: Ip.z — q.z| > |p.y — ¢.9|)}
QB(p):={g<yp: [pz-qz| < |py—q.y|)}
QT(p):={¢>yp: [pz—q.z| < |p.y — q.y)}

For an object s € S denote by nn(s) a nearest neighbor found so far and by &(s) the distance between s and nn(s).
Furthermore let NN(s) be the set of all nearest neighbors of s in S and A(s) their distance to s.

Our algorithm PSANN uses four sweeps: from left to right, from right to left, from top to bottom and from bottom
to top. We only describe the left-to-right sweep, the other sweeps work similarly. In the left-to-right sweep we find
a nearest neighbor r € NN(s) for all those objects s € S for which there exist points p € s and g €ErNQR(p)
such that di(p,q) = di(s,r). In the three remaining sweeps we solve the partial nearest neighbors problems with
the corresponding points p € s and ¢ € rNQL(p), g € rN QB(p) and ¢ € rNQT(p). During the sweep PSANN
maintains for each object s € S the smallest distance 6(s) to another object detected so far. The y-table stores
the active objects s € S which have been encountered by the sweep line SL and intersect their individual 8(s)-slice
Dy (s) to the left of SL, i.e. the objects for which s[R)].z + é(s) is to the right of SL. These are exactly those objects
of S encountered so far by SL which can have a nearest neighbor closer than 6(s) among the objects of S lying
completely to the right of SL. ‘
The z-queue is initialized with two sets of events: insertion events and deletion events. Insertion events are given
by the left end points: an object s is inserted into the y-table when the sweep line encounters its left end point
s[L]. Deletion events are determined by the right end points and the smallest distance to another object detected
so far: an object s is removed from the y-table as soon as it no longer intersects its 6(s)-slice Dj(sy, i.e. if the
position of the sweep line is at or to the right of s[R].z +6(s). This may happen either if the sweep line proceeds to
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the right or if an object’s 6(s)-slice shrinks because 6(s) becomes smaller. Since 6(s) can be different for different
active objects, the deactivation events can not be processed in a predefined order as in [BH 92]. Hence we have to
deal with a dynamic processing of deactivation events. Repeated shrinking of 6(s) for an active object s requires
left shifts of its deactivation event. We only know that the sweep line is at or to the right of s[R].z + §(s) when a
deletion event for s is executed.

In order to allow an efficient processing of the objects contained in the y-table it is necessary to find a canonical
total order on these objects. Such a total order will be defined in the following, it is the same as in [BH 92]. For
each object s € S let (Fig. 1)

R(s) = {(z,y) : = 2 s[R].z, y = s[Rl.y}  Q(s):=s[L],s[R]  Q(s) := Q(s) U R(s)

For the moment we assume that there are no intersecting pairs of objects in S; we will show later that the left-to-
right sweep works correctly even if there are intersecting pairs of objects with the restriction that S is z-diagonal
disjoint, i.e. for any two objects 51,53 € S we have Q(s1) Ns; = 51 N Q(s2) = 0. Let s[SL] := Q(s) N SL denote
the representation point of an active object s € S with respect to a sweep line SL. For objects 51,52 € S and a
sweep line SL we define ,

51 C 83 :<=> 51[SL] <y 52[SL]

S2 R
; Q(s2)

Q(s1)

SL

Figure 1: a) Q and Q for two objects s; C s b) Do we have to exchange s; and s5?

During the sweep the active objects are stored in the y-table with respect to C. It seems to be necessary to
exchange objects in the y-table when the sweep line reaches an intersection point of R(s;) and Q(s3) for two active
objects s;,s2 € S (Fig. 1 b)).
However, this never happens since s; has been deactivated when the intersection point of R(s;) and Q(s3) is
reached by SL: If p := R(s;) N Q(s2) is such an intersection point with smallest z-coordinate and s, and s, are
both active when p is reached by SL then obviously s, and s, are neighbors in the y-table with respect to C.
Now s; has been deactivated since 6(s;) < di(s1,52) < p.z — s1[R].z. The same argument applies to the next
such intersection point if we consider the set S\ s, instead of S, and similarly to all further intersection points.
Hence active objects do not change their relative order with respect to C while SL is moving to the right. Since
furthermore s,[SL] #, s3[SL] for two active objects s; # s the relation C is a total ordering on the objects in the
y-table.
During the sweep from left to right we maintain the following sweep invariants:

1) Each object s in the y-table intersects its individual 6(s)-slice Ds(,) to the left of SL.

2) For sy, 52 neighbored in the y-table with respect to C we have d(sy,s2) > 6(s1) and d(s1, s2) > 8(s2).
The first invariant is maintained by removing objects from the y-table that no longer intersect their (s)-slice.
In order to maintain the second invariant we have to compute distances of objects which become neighbors with
respect to C in the y-table and update their 6-values, if necessary. We obtain such new neighbor pairs after inserting
a new object into the y-table or after removing an object from the y-table.
It seems to be surprising that PSANN finds the correct result by just testing pairs of objects which become neighbors
in the y-table with respect to C. In the full version of the paper ((GH 92]) we prove that this is sufficient both for
intersection free and for diagonal disjoint configurations.

3 Analysis
Let S be a set of n convex planar diagonal disjoint objects. Let M(s) denote the storage needed by algorithm
PSANN for an object s € S. Then obviously PSANN needs a total of M(S) := 3_ .5 M(s) storage, which is in

O(n) if each object uses O(1) storage as it is true for configurations consisting of points, line segments or disks,
and O(N) for a configuration of n convex polygons with a total of N edges. Let the input configuration S be
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subset of a specific class C of compact, convex point sets of a certain type in the plane, e.g. the class of points, line
segments, disks or the class of convex polygons. We assume that there exist functions gc and hc which depend on
the underlying class C of objects such that:

- For each s € C the points s[L] and s[R] can be computed by at most O(gc) operations.

- For any s;,s; € C their minimal distance d;(sy, s;) with respect to any L*-metric d; (1 £t < o) can be

computed by performing at most O(hc¢) operations.

For computing all points s[L] and s[R], s € S, we need O(ngc) operations. The initialization of the z-queue,
i.e. sorting the objects with respect to s[L].z and s[R].z, can be accomplished in O(n logn) worst-case time. Each
comparison of two objects with respect to C costs constant time; therefore the cost for all operations performed on
the y-table during the plane-sweeps, i.e. inserting, deleting objects and finding neighbors, sums up to O(n log n)
time in the worst case. PSANN computes the distance of at most 3(n — 2) + 1 = 3n — 5 pairs of objects (n>3),
implying that all these distance computations take O(n hc) time. Each distance computation may result in shifting
of two deactivation events which costs O(logn) (see appendix) and therefore in total O(nlogn). Hence the plane
sweep algorithm PSANN solves the all nearest neighbors problem for a configuration S as defined above in time
O(nlogn + n(gc + hc)). It is obvious that PSANN solves the all nearest neighbors problem for a configuration S
of n objects in time O(nlogn) and storage O(n) if the underlying class C is the class of points, the class of line
segments, the class of disks or another class for which we have g¢,hc € O(1).
By using the same technique as in the Bentley-Ottman algorithm [BO 79] for detecting line segment intersections
PSANN can be modified to solve the all-nearest-neighbors problem for a configuration of n possibly intersecting
line segments in time O((n + k) log n) where k is the number of intersecting line segment pairs.
Let the input configuration S consist of n convex polygons with a total of N edges each of which is represented
by an array containing its vertices given in cyclic order. Then PSANN finds a closest pair with respect to the
Euclidean metric in time O(nlog N) and storage O(N): For a convex polygon s given by its vertices in cyclic
order the extreme points with respect to the lexicographic order can be determined in time O(log N) by Fibonacci
search [CD 87]. We can detect in optimal time O(log N) whether two of the convex polygons intersect [CD 87).
The minimal Euclidean distance between two non-intersecting convex polygons can be computed in optimal time
O(log N) ([E 85],(CW 83]). Thus we have gc € O(log N) and hc € O(log N). Each of the N edges is stored
exactly once, the representation of the objects in the y-table and the z-queue needs O(n) storage which sums up
to a storage complexity of O(N + n) = O(N).
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