Algorithms for proximity problems on colored point sets

THORSTEN GRAF AND KLAUS HINRICHS*

December 16, 1992

1 Introduction

Closest pair (CP) and all nearest neighbors (ANN) are fundamental problems in computational geometry. It is well
known that these problems can be solved in time O(nlog n) which is optimal in the algebraic decision tree model
- of computation.

Consider the following modifications of the CP and the ANN problems: Let S be a set of colored points. In the
CFP (closest foreign pair) problem one has to find a closest foreign pair, i.e. a bichromatic pair of points which are
closest. In the ANFN (all nearest foreign neighbors) problem one has to find for each point in the configuration
S a nearest neighbor with different color. Since algorithms which solve the CFP or the ANFN problem also solve
the CP or the ANN problem, respectively, for configurations that do not contain two points with the same color,
the problems CFP and the ANFN are in Q(n log n). [AERT 89] present an algorithm for the ANFN problem with
respect to the L2-metric making use of several Voronoi diagrams; see also [Ya 82] and [Va 84]. The ANFN problem
for two different colors and with respect to the Euclidean L2-metric is mentioned in [HNS 92).

In this paper we present plane sweep algorithms solving the CFP and ANFN problem with respect to the L*- and
the L!-metric in optimal time O(nlogn) and O(n) space.

For two points p,q € E? their L®- and L!-distances are given by dwo(p, q) := max{|p.z — q.z|,|p.y — ¢.y|} and
di(p,q) = |p.z — q.z| + |p.y — q.y|. d, and do metrics are relevant to various applications, such as modelling
of arm movements in disc transport mechanisms [LW 80] and in integrated circuit layout. Obviously distances
depend upon the location of the coordinate axes. The L!- and L®- metrics have a useful relationship: Consider
the transformation  : (z,y) — (z+v, y—z). It is easy to verify that for two points p, q € E? and the corresponding
transformed points 7(p) and 7(g) we have dw(7(p), 7(q)) = d; (p,g). It follows that an algorithm that solves the
CFP or the ANFN problem with respect to the L®-metric can also be used to solve the same problem with respect
to the L!-metric by adding a preprocessing step in which the points are transformed by 7. Therefore we concentrate
on the problems with respect to the L®°-metric.

2 The algorithm for the CFP-problem

In this section we consider the closest foreign pair problem:
Given a set finite set S of points in the plane E?, |S| = n, S = Uiz S with S;NS; =0 for 4,5 €
{1,...,N}, i # j, determine two points p € S; and q € Sj (i # j) with de(p,q) = min{dwo(p,§) : p €
Sk, € Sh,k,he{1,...,n},k # h}.
Assign each point set S; (i € {1,...,N}) a unique color, and let c(p) denote the color of a point pE€S. We will
consider the following reformulation of the problem: Determine a bichromatic closest pairin S.
Our algorithm 'PSCFP’ (Plane Sweep Closest Foreign Pair) uses the well known plane-sweep principle sweeping
the plane from left to right with-a vertical line (front, or cross-section), stopping at every transition point (event)
of the geometric configuration to update the cross-section, i.e. to maintain the sweep invariants which have to hold
for the points being encountered so far. All processing is done at this moving front, without any backtracking,
with a look-ahead of only one point.
The event queue is initialized with the points of the configuration S sorted increasingly with respect to the lexico-

graphic order

VP#QEE?:p<Tq:= (p<: ) V((P=z 9) A(p <y 9))
Throughout this paper we write p <; ¢, p <, ¢ and p =y ¢ instead of p.z < q.z, py < q.y and p.y = q.y,
respectively. Denote by Sy the set of points which have already been encountered, i.e. the set of points seen so far,

and by Sg its complement in S.
In the following we distinguish between active and deactivated points in S;. When a point p is encountered by the

*Institut fiir numerische und instrumentelle Mathematik -INFORMATIK -, Universitat Miinster, Einsteinstr. 62, D-4400 Miinster,
e-mail: thorstenCmath.uni-muenster.de, hinrichs@math.uni-muenster.de

78



sweep line SL we wish to know whether this point forms a new closest foreign pair with one of the points in Sy.
We keep a pair of closest foreign points found so far, along with their distance §. Therefore, all candidates in S
which may form a new closest foreign pair with the newly encountered point p lie in the left-open é-slice Dj to the
left of SL. A point p in Sy, is called active if it is contained in Dy, i.e. p.z + 6 is to the right of SL, and if it can
form a new closest pair with a point in Sg; otherwise the point p is called deactivated. Obviously two active points
cannot have the same y-coordinate regardless of whether their colors are different or the same. Hence the active
points can be stored in the y-table with respect to <y in increasing order.

During the sweep from left to right we maintain the following sweep invariants:

1) The points in the y-table are contained in the §-slice Dj.

2) If p1, p2 are neighbors in the y-table with respect to <y and their colors are different, i.e. ¢(p1) # c(p2), then
d(p1,p2) > 6.

The first invariant is maintained by removing points p from the y-table that no longer intersect the é-slice Dj,
i.e. for which p.z + 6 is on or to the left of the sweep line SL. In order to maintain the second invariant we have
to compute distances of points with different colors which become neighbors with respect to <y in the y-table and
update 6, if necessary. We obtain such new bichromatic neighbor pairs after inserting a new point into the y-table
or after removing a point from the y-table. It seems to be surprising that our algorithm PSCFP finds a bichromatic
closest pair by just testing bichromatic pairs of points which become neighbors in the y-table with respect to <,.
In the full version of the paper ([GH 92]) we prove the correctness of this simple mechanism.

The initialization of the event queue, i.e. sorting the points in S with respect to <%, can be accomplished in
O(n log n) worst-case time. PSCFP computes the distances of at most 3(n—2)+1=3n—5 (n > 3) pairs of points
implying that the cost for all operations performed on the y-table during the sweep sums up to O(nlogn) since
each point is inserted into and deleted from the y-table exactly once. Clearly PSCFP requires O(n) storage.

3 The algorithm for the ANFN-problem

In this section we consider the all nearest foreign neighbors problem:
Given a finite set S of points in the plane E?, |S| = n, § = UN,S; with S; NS; =0 forije
{1,...,N}, i # j. For each i € {1,...,M} and each p € S; determine a point g € S\ S; with
de(p,q) = min{d(p,7): r € S\ Si}.
As in section 2 we assign each of the sets S; a unique color and reformulate the problem as follows: Determine for
each point p € S a nearest neighbor in S having a color different from c(p).
For a point p € E? the two diagonal lines (with slopes +1) through p subdivide the plane into four quadrants. Let
us denote these quadrants as follows: QR(p) := {¢ >z p: [p.z—q.2z| 2 lp.y—q.9))}, QL(p) = {¢ <z p: |p.z—q.z| >
lpy—qyD)}, QB(p):={a<yp: [p.z—qz| < |p.y—q.y|)} and QT(p) :={g >y p: Ip.z — g.z| < [p.y — q.y|)}. For
a point p € S denote by nn(p) a nearest foreign neighbor of p found so far, and by 6(p) the distance between p and
nn(p). Furthermore let NN(p) be the set of all nearest foreign neighbors of p in S.
Our algorithm ‘PSANFN’ (Plane Sweep All Nearest Foreign Neighbors) applies the plane sweep technique described
in the previous section. PSANFN uses four sweeps: from left to right, from right to left, from top to bottom and
from bottom to top. We only describe the left-to-right sweep, the other sweeps work similarly. In the left-to-right
sweep we find a nearest foreign neighbor for all those points p € S for which there exists a nearest foreign neighbor
g € NN(p) N QR(p). In the three remaining sweeps we find a nearest foreign neighbor ¢ satisfying ¢ € QL(p),
q € QB(p) or g € QT (p) if a nearest foreign neighbor of p has not already been found before.
During the left-to-right sweep PSANFN maintains for each point p € S the smallest distance §(p) detected so far
between p and one of the other points in S;. The y-table stores the active points p € Sy which still can have a
nearest foreign neighbor among the points of Sg. In particular we know that p.z + 6(p) is to the right of SL for
such an active point p. Obviously two active points with different colors cannot have the same y-coordinate.
For ease of presentation we assume that no two points with the same color have the same y-coordinate. Then the
active points can be stored in the y-table with respect to <,. Let the functions pred(r) and succ(r) return the
predecessor and successor point of r in the y-table.
An active point p is deactivated and therefore removed from the y-table if the position of the sweep line is at or to
the right of p.z + 6(p). This may happen either if the sweep line proceeds to the right or if §(p) becomes smaller.
Since §(p) can be different for different active points, the deactivation events cannot be processed in the order given
by the points’ z-coordinates. Hence we have to deal with a dynamic processing of deactivation events. [Sch 91]
shows how to support an efficient delete operation in a heap if the location of the the element to be deleted is
known. Repeated shrinking of §(p) for an active point p requires left shifts of its deactivation event.
It is easy to see that it is not sufficient to calculate only distances of points having different colors that become
neighbors in the y-table with respect to <,. Points with a color different from c(g) for which the computation

79




of their distance to ¢ does not lead to an immediate deactivation, i.e. at g.z, cannot be contained in QL(q).
Therefore in PSANFN the y-table further supports the operations pred*(r) and succ*(r) which return for a point
r its predecessor and successor point with respect to <y in QL(r) N y-table.
During the left-to-right sweep we maintain the following sweep invariants:
1) For each point p in the y-table p.z + é(p) is to the right of SL.
2) If p,, p2 are neighbors in the y-table with respect to <, and their colors are different, i.e. ¢(p,) # ¢(p2), then
doo(P1,P2) 2 6(p1) and deo(p1, p2) > 6(p2).
3) For a newly encountered point p either pred*(p) = nil or ¢(p) = c(pred*(p)), and either succ*(p) = nil or
c(p) = c(succ*(p)).
The first two invariants do not differ from the sweep invariants in PSCFP except for the individual é-values of the
points. The third sweep invariant is maintained similarly as the second invariant for a new point encountered by the
sweep line. If pred*(p) exists and its color is different from c(p) then §(pred*(p)) has to be updated; then the first
invariant implies that pred*(p) has to be deactivated. This process is repeated until we find either pred*(p) = nil
or ¢(p) = c(pred*(p)). In an analog way we treat the successors succ*(p).
Let p € S for which there exists a nearest foreign neighbor ¢ € NN(p) N QR(p). In [GH 92] we prove that after ¢
has been processed §(p) = doo (p, q), and therefore a nearest foreign neighbor (not necessarily ¢) of p has been found.

The operations pred(p), succ(p), pred*(p) and succ*(p) can be performed in O(logn) time each (see section 4).
PSANFN computes the distance of less than 3(n — 2) + 1 + 3n pairs of points. This implies that the cost for all
operations performed on the y-table during the left-to-right sweep and hence the cost for the four sweeps sums up
to O(nlogn). Clearly PSANFN requires O(n) space (see section 4).

It remains to show how to support the y-table with the operations pred*(p) and succ*(p). In the following we restrict
ourselves to the description of succ*(p), the operation pred*(p) can be performed similarly. Let ¢ = succ*(p), then
¢ is the unique point in the y-table with (¢.z + q.y < p.z + p.y) and (¢ >y p) for which ¢.y is minimal. We apply
the transformation 7 : (z,y) — (z + y, ) to all points contained in the y-table and store these points in a data
structure QPST (quadrant priority search tree) which supports the following three operations:

1. insert(p): Insert point p into the QPST.

2. delete(p): Delete point p from the QPST.

3. YMinInQuadrant(p): For a point p contained in the QPST find the unique (possibly non-existent) point ¢ in

the QPST with the properties (¢ <; p), ¢ >, p and minimal y-value q.y.

The operation YMinInQuadrant(w(p)) on the transformed data is equivalent to succ*(p) on the original data. A
similar QPST is built using the transformation # : (z,y) — (y — z,).

4 The quadrant priority search tree

The QPST is based on the priority search tree ([Mc 85, [IKO 90]). The skeleton of the QPST is a half balanced
tree ([O1 82]). For each node v denote by I, the number of edges in the longest path from v to a leaf and by s,
the number of edges in such a shortest path. Half balanced trees have the balance property I, < 2s, for each
inner node. This balance property can be maintained after an insertion or deletion operation with at most three
rotations ([Ol 82]). The QPST is a 0-2 binary tree, i.e. each inner node has exactly two sons, and a leaf search tree
for the y-values, i.e. for every y-value there exists one leaf in the tree. Every node contains the maximum y-value
of its left subtree as a split value and space to store a point, possibly the nil-point. The points are stored according
to the following three conditions:

1. Each point p lies on the root-to-leaf path to p.y.

2. The z-values of the points stored along an arbitrary root-to-leaf path are in increasing order.

3. If a node contains a point then its father does, too.
The y-coordinate p.y of a point p (except for the maximal one) is the split-value of the node encountered after the
first right turn on the leaf-to-root path starting at the leaf containing p.y. A point p is called proper with respect
to po if p.z < po.z and p.y > po.y. Let LST(k) denote the left subtree and RST(k) denote the right subtree of a
node k. In general the operations delete and insert for a QPST do not differ from the corresponding operations for
a priority search tree (e.g. [IKO 90]).
In the following denote by r the root node of the QPST. Perform the operation YMinInQuadrani(p) as follows: By
walking down a root-to-node path K = {r = ky,...,kn = k} search for the node k with split value p.y. During
this walk all points stored along this path are examined.
Let LT(k) be true iff k,41 is the left son of k, and RT(k) be true iff k, 41 is the right son of k, for all nodes
k,(v € {1,...,n—1}). For k define RT(k) to be false and LT(k) to be true. Consider a node k = k, with RT(k) or
k = k. Since we performed a binary search for p.y, the split value in node k is less than p.y for k # k and equals p.y

80



Therefore these points need not be considered. Since these points are not of interest we only consider a skeleton of

the QPST consisting of the path K and the right subtrees of those nodes k, of K with LT(k,). A node k, in K
with RT(k) is called a dead node, and a node k, with LT(k,) is called a branch node.

Fix a branch node k,. Since the split value in k, is greater than or equal to p.y, the y-coordinates of all points
stored in RST(k,) are greater than p.y.

Let k, and k, be branch nodes with < v, and let ¢ be a proper (not necessarily y-minimal) point, which is either ‘

if k = k. The properties of the QPST imply that the y-coordinates of all points stored in LST(k) are less than p.y. 1

stored in a node of RST(k,) or in a node of K between k, and k,. Since K branches off to the left in k,, the
proper point ¢ is contained in LST(k,) and therefore has a y-value less than the y-values of all points stored in
RST(k,). Hence the points in RST(k,) need not be considered.

The following procedure finds the y-minimal proper point p in the subtree RST(k,) of a branch node &, or detects
the non-existence of such a point in time O(1): Start in the right son node k of k,. If the point ¢ stored in k has
an z-value greater than p.z, the z-heap property of the QPST implies that this is also true for all other points in
RST(k,). The non-existence of a proper point in RST(k,) is detected and we continue the process as described
above. If the point ¢ stored in node k has an z-value smaller than p.z then g is proper. We continue the process
in the left son node of k if the point it stores is proper; actually this point is better than all proper points stored
in the right subtree of k. If the point in the left son node of k is non-proper, we continue in its right son node. We
stop the process if we cannot choose a son node containing a proper point any more.

In the following we describe how to process the path K in reverse order: Starting in node k determine for each
branch node k, the y-minimal proper point in RST(k,). Our considerations above show that we can stop climbing
the path K if the search is successful. Otherwise climb up path K and continue with the predecessor branch node
ky of k, if no proper point is stored along K between k, and k,. After processing /{ we output the y-minimal
proper point or the nil point. .

In [GH 92] we show that YMinInQuadrant(p) finds the y-minimal proper point p stored in the node k. Since the
height of a half balanced tree is bounded by 2log(n + 2) — 2 € O(logn) ([0 82)) it is easy to see that the three
operations of the QPST can be performed in time O(logn) each. Until now we have assumed that all points have
different y-coordinates. However, the QPST can be easily modified so it can handle multiple points with the same
y-coordinate. For more details see [GH 92].

References

[AERT 89] A.Aggarwal, H.Edelsbrunner, P.Raghavan and P.Tiwari: Optimal time bounds for some proximity
problems in the plane, Information Processing Letters 42, 55-60 (1992).

[GH 92] Th. Graf, K. Hinrichs: Algorithms for proximity problems on colored point sets, Preprints ” Angewandte
Mathematik und Informatik”, Nr. 18/92-1, Westfalische Wilhelms-Universitit Miinster, 1992

[IKO 90] Ch.Icking, R.Klein, Th.Ottmann: Priority search trees in secondary memory, in H. Gottler und
H.J. Schneider (eds.), Graphtheoretic Concepts in Computer Science (WG ’87), Lecture Notes in Computer
Science 314, 84-93, Springer-Verlag, New York, 1987.

(LW 80] D.T. Lee and C.K. Wong: Voronoi diagrams in L; (Lo ) metrics with 2-dimensional storage applications,
SIAM Journal on Computing 9(1), 200-211 (1980).

[Mc 85] E.M.McCreight: Priority search trees, SIAM Journal on Computing 14(2), 257-276 (1985).

[O1 82] H.J.Olivie: A new class of balanced search trees: Half-balanced binary search trees, R.A.LR.O. Informatique
Theorique 16, 51-71 (1982).

[Sch 91] P. Schorn: Robust algorithms in a program library for geometric computation, PhD Dissertation No. 9519,
ETH Ziirich, Switzerland, 1991.

[Va 84] P.M. Vaidya: A fast approximation algorithm for minimum spanning trees in k-dimensional space,
Proc. 25th Annual IEEE Symposium on Foundations of Computer Science, 403-407, 1984.

[Ya 82] A.C. Yao: On constructing minimum spanning trees in k-dimensional space and related problems, SIAM
Journal on Computing 11(4), 721-737 (1982).

B N IR
’ »G‘ 4 ‘ ) ,. ‘." bi! .

10,4117

81




