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Abstract.- Voronoi diagrams in the plane for strictly conver distances have been studied in (3], [5])
and (7). These distances induce the usual topology in the plane and, moreover, the Voronoi diagrams
they produce enjoy of many of the good properties of Voronoi diagrams for the Euclidean distance.
Nevertheless, we show (Th.1) that it is not possible to transform, by means of a bijection from the
plane into itself, the computation of their Voronoi diagrams, to the computation of an Euclidean
Voronoi diagram (ezcept in the trivial case of the distance being affinely equivalent to the Euclidean
distance). The same applies if we want to compute just the topological shape of a Voronoi diagram
of at least four points (Th. 2).

Moreover, for any strictly convezr distance not affinely equivalent to the Euclidean distance,
new, non Euclidean shapes appear for Voronoi diagrams, and we show a general construction of a
nine-point Voronoi diagram with non Euclidean shape (Th.3).

Given a partition V of the plane into finitely many regions Ash and Bolker [1] have studied the problem
of deciding if V' is an Euclidean Voronoi diagram for some set of points (see also [2] and [5]). We can relax the
conditions, and ask if the given partition V has at least the same topological shape of an Euclidean Voronoi
diagram of some finite set of points. Here and in what follows we say that two cellular decompositions of
the plane, each with a finite number of cells, have the same topological shape if there is an homeomorphism
of the plane onto itself sending cells to cells.

This question is theoretically quite easy, as one can construct an algorithm to decide it as follows: taking
the coordinates of the points for the Voronoi diagram as indeterminates, the fact that the Voronoi diagram
for these points has the shape of V can be expressed as a finite set of conditions on these indeterminates,
in such a way that there exists an Euclidean diagram with the shape of V if and only if the conditions are
satisfied for some values of the indeterminates. Now, the conditions appearing are always about the position
of the circle passing by three of the points respect to a fourth one, i.e. they are polynomial equalities or
inequalities, and real quantifier elimination gives the answer to the problem whether they have a solution or
not.

More interesting is to study the question about having the same topological shape of a planar Euclidean
Voronoi diagram for the entire collection of partitions V arising as Voronoi diagrams for a non Euclidean
distance. Does the changing of the distance imply a drastic change on the shape of Voronoi diagrams?
Concretely we will consider the class of normed distances verifying the strong triangle inequality (i.e. the
triangle equality holds only for collinear points, cf. [6]). Voronoi diagrams for these distances (that we shall
call strictly conver distances) have been first considered by Chew and Drysdale (3] and then studied by Klein
(5], Mazon (8], exhibiting an algorithm for their computation. Moreover, these distances are in many other
respects quite close to the Euclidean distance; for instance they yield the usual topology on the plane and
the Voronoi diagrams for them induce the same kind of cellular decomposition of the plane as the Euclidean
Voronoi diagrams do. Thus the problem we posed about the conservation of the topological shape of Voronoi
diagrams is quite natural in this situation.
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To study this problem we give some necessary conditions for a cellular decomposition to have the
same topological shape of a Voronoi diagram for a strictly convex distance, and then exhaustively study
the diagrams which satisfy them for low number of regions. We find that, even for four regions, there are
some of them not “realizable” by any Euclidean Voronoi diagram, and that can be realized by some strictly
convex distances. These four-points examples are based on the fact that if a strictly convex distance d is
not smooth (in the sense that its unit ball has ‘corners’), then three non collinear points need not to be
d-cocircullar. If we restrict ourselves to smooth distances, up to six points the only topological shapes that
the Voronoi diagrams can have are those of Euclidean Voronoi diagrams, but again some new shapes appear
for seven points. Finally we prove that these kind of “non Euclidean shapes” for Voronoi diagrams appear
for any strictly convex distance d, provided that d is not an affine transformation of the Euclidean distance.
(A general construction of a nine point Voronoi diagram with different shape from any Euclidean Voronoi
diagram is shown).

Another interesting problem is deciding, if two distances d and é are given , whether it is possible or
not to reduce by means of a bijection f in the plane, the computation of the Voronoi diagram of a set S of
points for distance d to the computation of Voronoi diagram of the transformed points f(S) for distance §.
At this respect our main results are:

Theorem 1. Let d and § be two strictly convex distances in the plane.
(i) If d = 6o f with f a bijection of the plane onto itself (i.e. d(P,Q) = §(f(P), f(Q)),VP,Q), then f is an
affine mapping, and for every finite set S C R?%:

F(Vora(S)) = Vors(£(S)).

(ii) If there exists a bijection f : R? — R? preserving the bisectors of every two points, i.e. such that:

VP,QeR?  f(Bia(P,Q)) = Bis(f(P), f(Q)),

then f is affine,d=k-60 f =60 (k- f), for some constant k > 0, and thus we are in the conditions of

(i)

Two distances such that d = § o f, with f an affine bijection will be called affinely equivalent. Part
(i) of Theorem 1 says that if one knows how to compute Voronoi diagrams for a given distance §, then one
can also compute them for any other affinely equivalent distance d. For instance, the problem of computing
Voronoi diagrams with respect to a strictly convex distance d whose unit ball is an ellipse can be reduced to
compute Euclidean Voronoi diagrams.

Part (ii) of Theorem 1 establishes that, in order that two given strictly convex distances d and é are
affinely equivalent, it suffices that a bijection f from the plane to the plane exists such that it preserves
bisectors (which are two point Voronoi diagrams). In this case, (i) implies that the Voronoi diagram of
any finite set of points will be also preserved. In other words, (ii) is a strong reciprocal of (i): the only
transformations which allow to reduce the computation of the Voronoi diagram for one strictly convex
distance to another one are bijective affinities. Note also that if we take the bijection f as being the identity,
(i) and (ii) say that two distances produce identical Voronoi diagrams for every finite collection of points if
and only if they have the same bisectors and that, in this case, they are related by d = ké and so they have
the same circles (a circle for a distance d is the set of points with equal distance to a fixed center; if it is be
convinient to specify the distance we shall call them d-circles).

After this, in some sense, negative result, we are interested in knowing when this procedure of reduction
permits to obtain, if not the exact diagrams, at least their topological shape, as this is the hardest part in
the computation of a Voronoi diagram ([4]). We find the next negative result, with the additional hypothesis
of the distances being smooth (i.e. with smooth circles).
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Theorem 2. Let d and é§ be two strictly convex and smooth distances in the plane. If there exists a
bijection f from the plane onto itself such that for every finite set S, Vor4(S) has the same topological shape
as Vors(f(S)), then f is affine, d = k6 o f for some constant k > 0 and we are in the conditions of Th.1(i).
Moreover, the hypothesis is only needed for sets S of four or less points, and it is not sufficient to have it for
sets of three points.

As a corollary to Theorems 1 and 2, to look for homeomorphism between Voronoi diagrams of strictly
convex smooth distances is the same as to look for equality. We want to remark that the additional hypothesis
of the distances being smooth is used in our proof, but possibly Theorem 2 would be still true without making
it.

Finally we may wonder whether two strictly convex distances produce the same collection of topological
shapes for Voronoi diagrams or not. We do not have a general answer for this, except if one of the distances
is the Euclidean one, and in this case the answer is positive only for distances affinely equivalent to the
Euclidean distance:

Theorem 3. If d is a strictly convex distance, not affinely equivalent to the Euclidean distance, then there
exists some collection S of nine points whose Voronoi diagram with respect to distance d, Vor4(S), has not
Euclidean shape.
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