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1. Introduction

Voronoi Diagrams in the plane for distances different from the Euclidean one have been considered in
several papers! 2345,

Lee! has considered this problem for the class of all the L,-distances for 1< p<oo, and after studying the
behaviour of bisectors, he describes an algorithm, generalizing the standard divide and conquer approach,
to construct the Voronoi diagram.

Chew and Drysdale? consider the same problem for the more general class of convex distance functions.
They propose also the divide and conquer scheme, but do not prove why essential parts of their algorithm,
like contour scan during the merge phase, can be applied to convex distance functions as it does to the
Euclidean distance.

Klein® provides details about a divide and conquer algorithm that works for the class of nice distances
in the plane. A distance d is nice if the following four properties hold: (i) d induces the usual topology. (ii)
The d-circles are bounded with respect to the Euclidean distance. (iii) d verifies the between condition, i.
e. given any two distinct points A and C, there exists a point B, different from A and C and such that:
d(A,C) = d(A, B) + d(B,C). (iv) Bisectors are closed sets, homeomorphic to the interval (0,1) and halve
the plane in two unbounded regions; moreover it is required that the intersection of any two bisectors has a
finite number of connected components.

Whereas the first three properties are fulfilled by every convex distance, it remains open wheather
property (iv) always holds.

In this work we provide the first detailed investigation of the class of strictly conver distances, their
bisectors and their Voronoi regions and study to what extent they look like in the Euclidean case.

First we show that any two d-circles (with respect to a strictly convex distance d) intersect at most
twice. Second we prove that for each bisector Bi(P,Q), there exist an homeomorphism mapping the plane
onto the plane that sends Bi(P,Q) to a line. As a consequence of the former result, any two associated
bisectors Bi(P,Q) and Bi(P, R) intersect at most once and, if they do, they cross transversally. This is the
reason why the merge step works here as for the Euclidean distance .

But bisectors of a strictly convex distance can behave quite differently from the straight lines of Euclidean
distance. For example, bisectors do not always have an asymptotic line. Moreover, there do exist pairs of
bisectors Bi(P,Q) and Bi(R,S) that intersect at an infinite number of points. Therefore, strictly convex
distances do not in general fulfill property (iv) in the definition of nice distances. However, we show that
this problem does not occur if the d-circles are semialgebraic. This is, in fact, the case for all L,-distances
and also for most practical applications.

2. Preliminars

A strictly convez distance on the plane is the one induced by any norm and such that the boundary of
the unit ball defined by this distance contains no three collinear points. The closure of the unit ball under a
strictly convex distance can be characterized as being a compact and strictly convex subset K of the plane
that contains the origin as an interior point and that is symmetrical with respect to it. Conversely, any such
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set K can serve to define a normed distance in such a way that the set K is the closure of the unit ball for
this distance®. The distance induced by K, between two points P and @, is measured as follows: translate
K so that it is centered at P and call it Kp. Let Z be the unique point of intersection of the half line from
P through Q, with the boundary Bd Kp of Kp. Distance between P and Q is the quotient of the Euclidean
distances between P and Q and P and Z.

Strictly convex distances verifies the strong triangle inequality, i. e.: P does not belong to the closed
segment [X,Y] if and only if d(X,Y) < d(X,P)+d(P,Y)?. Moreover, given two points P and Q, there
exists a unique midpoint which is the Euclidean midpoint of P and Q°. (Given two points P and Q on the
plane, a point R is a midpoint of P and Q for the distance d if and only if d(P, R) = d(R,Q) = %d(P, Q).

Let d be a strictly convex distance on the plane and let P and Q be any two distinct points. The bisector
Bi(P,Q) of P and Q with respect to the distance d is defined as Bi(P,Q) = {X € R? : d(P, X) = d(Q, X)}.
The d-circle of centre P and radius r, C4(P,r) is defined as Cy4(P,r) = {X € R? : d(P, X) = r} and equals
the boundary Bd B4(P,r) of the open d-ball B4(P,r) centered at P and of radius r.

2. Summary of Results

Theorem 1. If d is a strictly convez distance on the plane then any two d-circles intersect at most in two
points. As a consequence, given three points on the plane, there ezist at most one d-circle containing them.

Each point X on the bisector Bi(P,Q) of P and Q, is a point of intersection of two, equal radii, d-circles
centered at P and Q. This radius can be used to parametrize Bi(P,Q) proving that it is a simple curve
topologically like a line as stated in the following Theorem.

Theorem 2. (topological structure of bisectors). Bisectors for a given strictly conver distance are simple
curves that halve the plane in two unbounded regions. Moreover, there ezists an homeomorphism from the
plane onto the plane, that sends a line onto the bisector.

Now we are able to give more geometric information about bisectors. Let us introduce some notation.
In what follows suppose a strictly convex distance d on the plane is given. Let us call C the unit d-circle.
Given any two points P and Q on the plane, let m be the slope of the line determined by the center of C and
the point S of contact of one supporting line of C parallel to the line PQ. There is no loss of generality in
supposing that line PQ is horizontal and that the midpoint between P and Q is the origin O. Let rp,(P) and
rm(Q) be the lines of slope m through the points P and Q respectively. These two parallel lines determine
a band of finite width between them.

Theorem 3. Bi(P,Q) is contained in the band determined by rm(P) and rm(Q) and is symmetrical with
respect to the midpoint of P and Q.

We conclude that the asymptotic direction of Bi(P,Q) is m. But this doesn’t mean at all that an
asymptotic line must exist for Bi(P, Q) and even if it exists we only know its slope but not its exact situation.
The following theorem gives a necessary and sufficient condition for an asymptotic line for Bi( P, Q) to exist.

Let us introduce first some more notation. Given two distinct points P and Q, consider the d-circle
centered in the midpoint of P and Q and passing through P and Q. There is no loss of generality in supposing
that this d-circle is the unit circle C and that PQ is horizontal (changing the reference system and scaling
if necessary) so the origin O is the midpoint between P and Q. As before let S be the point of contact of
the supporting line of C parallel to the line PQ. Note that point S is the highest point in C. Chords c(h)
of C parallel to line PQ (i. e. horizontal) at distance h from S are divided in two segments c1(h) and ca(h)
by the line OS. Let sj(h) and s3(h) be their respective lenghts (See Fig.1).

In what follows let us assume that P, Q, C, S, s1(h) and s(h) are as described. With this notation the
existence of an asymptotic line for Bi(P, Q) is characterized as follows.

Theorem 4. A necessary and sufficient condition in order that an asymptotic line for Bi(P,Q) exzists is the
ezistence of the following limit:
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If limit | ezists then the asymptotic line is the one having slope m and passing through a point T € [P, Q)
such that:
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Fig. 1

Remark 1. If an asymptotic line for Bi(P, Q) doesn’t exist, then if I; (respectively ) is: lim,_o 2 X

(respectively imp—o —E—%) we have that the bisector Bi(P, Q) approachs infinitely many times the lme iy
(respectively l3) of slope m and intersecting segment PQ in a point T (respectively T”) such that: :T L
l; (respectively H = [3). This situation implies that Bi(P, Q) must have infinite inflection points inside

the band determined by the lines I, and l. Here, by inflection points we mean a point in the curve Bi(P,Q)
through which there is no line that leaves the curve in one of the halfplanes determined by the line.

Remark 2. Let C and'S be as before. Suposse that f : (zo—6,zo+6) — R is a function such that f(zo) =
and whose graph equals C in some neighbourhood of S. Note that as f is continuous and strictly convex,
the lateral derivatives f(zo) and f.(zo) always exist. Moreover, as S = f(zo) is a relative maximum for
[, it follows that f} (zo) < 0 and f’(zo) > 0.

If curve C is not differentiable at S, i. e. if fi(zo) # fL(20), the next Proposition assures that limit /
always exists and explicitly gives its value. Let P, Q, C, S, s;(h), s2(h) and f as before.

Proposition 1. If curve C is not differentiable at S, i. e. f|(zo) and f'(zo) are different, then | ezists

and lakes the value:

_si(h) _ 1/f(a0) = 1/m
h=0 s3(h)  1/m —1/f}(z0)
where m i3 the slope of line OS, unless m = oo but then:

—f+(30)
fL(zo)

l=

If curve C is differentiable at S, then fi(zo) = f_(zo) = 0. It is possible, in this case of differentiability
of C at S, that limit / does not exist. But if limit { does exist then the following Proposition can simplify
its calculation.

Proposition 2. If curve C is differentiable at S, then the line OS, which determines the segments c;(h) and
c2(h), of lenghts s,(h) and s2(h) respectively, on the chord c(h) of C, can be replaced by the perpendicular
through S to PQ without changing the value of the limit l , i. e.

. s1(h) _ .. pi(h)

223 52(h) ~ A5 pa(h)’




The next example consists on a strictly convex distance d such that any pair of points P and @, lying
on an horizontal line, have a bisector Bi(P,Q) with an asymptotic line not centered in the band determined
by the lines rm(P) and r,m(Q). In the calculation of limit [ we will make explicit use of Proposition 2.

Example. Consider two arcs of Euclidean circles of radius r and R, with r < R, the second centered in the
origin (0,0) and the first somewhere between the origin (0,0) and point (0, R), so that these two arcs have
a common tangent at point (0, R). As indicated in Fig.2, they can be considered as part of a unit d-circle C
whose highest point is S = (0, R).

Fig.2

Let us calculate limit { in this case, in order to study the existence of an asymptotic line for bisectors
of pairs of horizontal points for such a distance:

lim s1(h) _ lim V12— (r—h)? —\/l' 2rh — h? —\/lim 2r—h _ [r
h0 53(h) A0 /RE— (R—h)? VAr=02Rh—h? _ Va=o2R—h VE
We conclude that for a pair of horizontal points P and @ and for the distance d induced by such a C,

an asymptotic line for Bi(P, Q) exists that is parallel to the line passing through the center O (of C) and S,
and such that its point T of intersection with segment PQ verifies the relation:

Do oy L

IT-QIl VR
In this case f'(zo) = 0 and f(zo) # f”(20). Then, as 1/r = f"(z0)/(1 + f'(z0)3? where r is the radius of
curvature, it follows that :

fi(’-’o)

f2(zo)

The result in this example suggests that maybe we could, in some cases, eliminate the direct computation
of the limit [ if we know the second derivatives of curve C at S, in view of the relation between the radii of
curvature of curve C at S and the second derivatives of function f at zo. Moreover limit ! can be calculated
from the knowledge of the derivatives of the curve C at S, as the following Proposition establishes.

Proposition 3. If curve C is differentiable of order p at S and the following two conditions hold:
(i) f'(zg) = f"(z0) = ... = fP(z0) = 0.
(ii) £+ (z0) and f2*'(zo) are distinct.

Then:
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Klein and Wood* gave no examples of "nice” distances different from the Euclidean one, possibly because
in the definition of ”niceness” some conditions appear which are difficult to stablish. Note that strictly convex
distances verify trivially (i) and (ii) in the definition of a nice distance. (iii) is also verified as strictly convex
distances are additive along lines®. First part of (iv) follows from Theorem 2. We can show (see the full
paper) that pairs of bisectors that intersect infinitely many times, do exist for some strictly convex distances.
Thus the class of strictly convex distances is not included in the class of nice distances. However, among the
strictly convex distances, those which have a semialgebraic curve as the boundary of the unit ball are nice in
the sense of Klein and Wood, as it is proved in the next theorem. With this result we are able to construct
many and easy to handle examples of nice distances, by giving a finite number of algebraic conditions.

Theorem 5. Let d be a strictly convez distance such that the boundary of the unit ball is a semzialgebraic
curve. Then the bisector of any two points is also a semialgebraic curve. As a consequence the intersection
of any two bisectors has a finite number of connected components.

Though strictly convex distances are in general not nice, they produce, as nice distances do3, Voronoi
diagrams with very good properties. Let us state first the definition of the Voronoi diagram for one of these
distances.

Let d be a strictly convex distance on the plane and A a finite collection of points. Let H(P,Q) = {X €
R? :d(X,P) - d(X,Q) < 0}. Then: :

Ra(P)= (] H(PQ

QeA-{P}

is the Voronoi region of P with respect to A and:

Vora(A) = | BdRa(P)
PeA

is the Voronoi diagram of A with respect to the distance d.

Theorem 6. (Properties of Voronoi regions) Let d be a strictly convez distance on the plane and A a finite
collection of points. Then:

(1) Ra(P) is an open and not empty subset of the plane and Ro(P) = {X € R? : d(X,P) < d(X,Q),
for every Q € A - {P}}.

(i) Ra(P) is star-shaped as seen from P.

(iii)) CIR4(P) = {X € R? : d(X,P) < d(X,Q), for every Q € A — {P}}, where Cl denotes the
topological closure.

(i) Upea CI Ra(P) = R2.

In the Euclidean case bisectors are straight lines and so any two bisectors intersect at most once and
transversaly. In the general case of an arbitrarly strictly convex distance d, we just know that bisectors are
simple curves and therefore we ask how does the intersection of two bisectors look like. We have already
mentioned some wild behaviour of the intersection for some pairs of bisectors. Now we study this problem
in the case of associated bisectors, i. e. when they are any pair among the bisectors determined by three
given points.

Proposition 4. Let P, Q and R be three points in the plane. Let m and m’ be the asymptotic directions of
the associated bisectors Bi(P,Q) and Bi(P, R) respectively. Then:
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(i) The associated bisectors Bi(P,Q) and Bi(P, R) intersect at most once.
(ii) The associated bisectors Bi( P,Q) and Bi(P, R) intersect ezactly once if and only if the points P, Q and
R are d-cocircular.
(iii) In the case of smooth boundary, the associated bisectors intersect if and only if its asymptotic directions
m and m’' are different.
(iv) In the case of non smooth boundary, if the asymptotic directions m and m’ are different, the bisectors
intersect ezactly once but nothing can be said if the directions coincide.

We will say that the bisectors Bi(P,Q) and Bi(P, R) associated to three given points P, @ and R
intersect transversaly if the following two conditions holds:

(a) They intersect (necessarily in exactly one point).

(b) It exists an homeomorphism from the plane onto the plane sending each of the coordinate axes onto
each bisector.

The two open regions that Bi(P, Q) determines are, each one, characterized as the set of points where
function f(X) = d(X, P) —d(X, Q) is less than (respectively greater than) zero ({f < 0} and {f > 0}). We
can say then that Bi(P,Q) divides the plane into two regions each of them having an associated sign < or
>. Note that taking — f instead of f leads to the interchange of signs in the regions.

Similarly, the two open regions that Bi(P, R) determines are characterized by the signs of function
9(X) =d(X,P) —d(X,R).

If Bi(P,Q) and Bi(P, R) intersect, then around the intersection point appears a set of regions charac-
terized each of them by a pair of signs, first sign being the one of function f, second sign the one of function
g. This pair of signs will be called a combination of signs. The possible combinations are <<, <>, >< and
>>.

Transversality in the intersection of bisectors Bi(P,Q) and Bi(P,.R) is equivalent to the appearence
of four regions, each of them with one of the possible combination of signs®. Non appearence of some
combination indicates that the intersection is not transversal and in this case one of the remaining signed
regions will be not connected as shown in Fig.3.

> < >
BEID SRS
><| <« X t}sr{mgb(i
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<< ! ‘o t!.".’ta—..w-.
Fig. 3

Theorem 7. Let P, Q and R be three points in the plane. If their associated bisectors Bi(P, Q) and Bi(P, R)
intersect, then they do it transversaly.
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